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Abstract
Randomized matrix compression techniques, such as the
Johnson-Lindenstrauss transform, have emerged as an effec-
tive and practical way for solving large-scale problems effi-
ciently. With a focus on computational efficiency, however,
forsaking solutions quality and accuracy becomes the trade-
off. In this paper, we investigate compressed least-squares
problems and propose new models and algorithms that ad-
dress the issue of error and noise introduced by compression.
While maintaining computational efficiency, our models pro-
vide robust solutions that are more accurate than those of clas-
sical compressed variants. We introduce tools from robust op-
timization together with a form of partial compression to im-
prove the error-time trade-offs of compressed least-squares
solvers. We develop an efficient solution algorithm for our
Robust Partially-Compressed (RPC) model based on a reduc-
tion to a one-dimensional search.

Introduction
Random projection is a simple and effective dimensional-
ity reduction technique that enables significant speedups in
solving large-scale machine learning problems (Dasgupta
2000; Mahoney 2011; ?). It has been successfully used, for
example, in classification (Pilanci and Wainwright 2014;
Zhang et al. 2012), clustering (Boutsidis, Zouzias, and
Drineas 2010; Fern and Brodley 2003; Urruty, Djeraba, and
Simovici 2007), and least-squares problems (Drineas et al.
2011; Pilanci and Wainwright 2014). The focus of this pa-
per will be on the latter. We consider the following canonical
least-squares estimator, with A ∈ RM×N :

xLS
def
= argmin

x

1

2
‖Ax− b‖2 = (ATA)−1AT b (1)

where ‖·‖, for vectors, denotes the Euclidean norm through-
out the paper, and A has the full column rank. We assume
that M � N and refer to xLS as the solution to the uncom-
pressed problem.

When M is very large, solving the least-squares problem
in (1) can be time-consuming and computationally expen-
sive. To gain the necessary speedups, random projections
are used. The standard approach to doing so proceeds as fol-
lows (Drineas et al. 2011). First, we construct a compres-
sion matrix Φ ∈ Rm×M from a random distribution such
Copyright c© 2017, Association for the Advancement of Artificial
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Figure 1: Cumulative probability distribution of residuals of
various compressed least-squares methods. The horizontal
axis represents the normalized residual compared to solving
the full least squares problem.

that E
[
ΦTΦ

]
= I and m � M . Then, we solve the fully

compressed problem:

xCLS
def
= argmin

x

1

2
‖Φ (Ax− b)‖2 (2)

Numerous efficient methods for constructing the compres-
sion matrix Φ have been developed; surveys are provided in
(Boutsidis, Drineas, and Magdon-Ismail 2013; Drineas et al.
2011; Mahoney 2011). We describe and use several common
methods for constructing Φ in the empirical results section
below.

When m in Φ is small, the fully compressed least-squares
problem in (2) is much easier to solve than the uncompressed
least-squares in (1). However, compression can introduce
significant errors to the solution xCLS when compared to the
uncompressed solution, xLS and one is forced to consider
the trade-off between accuracy and efficiency. As our main
contribution, we propose and analyze two new models that
address this issue and provide a desirable trade-off; enabling
robust solutions while preserving small computational com-
plexity.



Results in Fig. 1—which we explain in detail in the exper-
imental section—demonstrate the main issue with standard
methods as well as how we alleviate it. Our new model is
the following partially-compressed least-squares estimator:

min
x

1

2
‖ΦAx‖2 − bTAx (3)

which is denoted as “PartialCompressed LS” in Fig. 1 and
its solution is given by:

xPCLS
def
= (ATΦTΦA)−1ATb . (4)

Note that only the computationally expensive parts of the
ordinary least-squares estimator, which involve inverting
ATA, are compressed. Also notice, in comparison, that the
objective function of the fully compressed least-squares es-
timator is 1

2 ‖ΦAx‖2 − bT ΦTΦAx.
While not the focus of this paper—since our goal here is

to introduce our new estimator in (3)—it is important to note
that the prediction error ‖AxPCLS − AxLS‖ of the partially
compressed solution, xPCLS, is not always smaller than the
error of the fully compressed one, xCLS. We describe when
and why this is the case in the section that deals with the
approximation error bounds.

To further reduce the residuals of partial least squares,
we have derived our second model, the robust partially-
compressed least-squares estimator (RPC). It is denoted as
“PartialComp. LS, robust” in Fig. 1. RPC explicitly models
errors introduced by compression and is closely related to
robust least-squares regression (El Ghaoui and Lebret 1997).
Leveraging robust optimization techniques makes it possi-
ble to reduce the solution error without excessively increas-
ing computational complexity and is a data-driven approach
that has been widely used in the last two decades (Ben-Tal,
El Ghaoui, and Nemirovski 2009). In our numerical results,
we have observed a similar effect to that when applying ro-
bust optimization to the fully compressed least-squares so-
lution; increased accuracy and reduction in error.

While we show that RPC can be formulated as a second-
order conic program (SOCP), generic off-the-shelf SOCP
solvers may be slow for large problems. Therefore, as one of
our contributions, we have developed a fast algorithm based
on a one-dimensional search that can be significantly faster
than CPLEX. Using this fast algorithm, the RPC model is
asymptotically just as efficient as the non-robust model. Ta-
ble 1 puts our results in context of prior related work.

Our empirical results, show that both partially-
compressed and robust partially-compressed solutions
can outperform models that use full compression in terms
of quality of solutions. We also show that compressed
variants are more computationally efficient than ordinary
least-squares, especially as dimensions grow.

Robust Partially-Compressed Least-Squares
As described above, our objective is to enhance solution
quality and increase robustness against noise and errors in-
troduced by compression. One way of improving robust-
ness is to use ridge regression, which when applied to our
model (3), we obtain the following formulation:

min
x

1

2
‖ΦAx‖2 − bTAx+ µ‖x‖2, (5)

for some regularization parameter µ. One caveat of using
ridge regression is that it does not capture the error struc-
ture introduced by compression, which differs significantly
from that present in the data of the original uncompressed
ordinary least-squares problem. Robust optimization (Ben-
Tal, El Ghaoui, and Nemirovski 2009), however, enables
us to do exactly that and allows us to explicitly model
the error structure. The following is our Robust Partially-
Compressed (RPC) estimator:

xRPC = argmin
x

max
‖∆P‖F≤ρ

1

2
‖(P + ∆P )x‖2 − bTAx (6)

where P = ΦA and ∆P is a matrix variable of size m×N .
The general formulation of the problem allows for a more
targeted model of the noise that captures the fact that ‖ΦAx‖
is a random variable while bTAx is not. That is, the uncer-
tainty is restricted to the data matrix P alone since the partial
compression does not introduce any noise in the right-hand
side.

Without compression, it is worth noting that applying ro-
bust optimization techniques to the ordinary least-squares
problem yields the same solution as applying ridge regres-
sion with a data-dependent parameter (El Ghaoui and Le-
bret 1997). As we will show, this is not the case in our set-
ting, as robust partially-compressed least-squares does not
reduce to ridge regression. Empirically, we have also seen
that robust partially-compressed least-squares is more likely
to yield better results than ridge regression and has more in-
tuition built behind it.

All of the above, motivated us to focus more on our
RPC (6) model and to derive a corresponding efficient so-
lution algorithm.

Optimal Solution of RPC
While the inner optimization in (6) is a non-convex opti-
mization problem, we show in the following lemma that
there exists a closed-form solution.
Lemma 1. The inner maximization in (6) can be reformu-
lated for any x as:

max
‖∆P‖F≤ρ

‖(P + ∆P )x‖2 = (‖Px‖+ ρ‖x‖)2
. (7)

In addition, the maximal value is achieved for ∆P =
ρ

‖Px‖‖x‖Pxx
T.

Proof. The objective function can be upper-bounded using
the triangle inequality:

max
‖∆P‖F≤ρ

‖(P + ∆P )x‖2 ≤ max
‖∆P‖F≤ρ

(‖Px‖+ ‖∆Px‖)2

≤ (‖Px‖+ ρ‖x‖)2
.

To show that this bound is tight, consider ∆P =
ρ

‖Px‖‖x‖Pxx
T. It can be readily seen that ‖∆P‖F = ρ.

Then by algebraic manipulation:

max
‖∆P‖F≤ρ

‖(P + ∆P )x‖2 ≥ ‖(P + ∆P )x‖2

= (‖Px‖+ ρ‖x‖)2
.



Least Squares Ridge Regression Robust Least Squares

No Compression many e.g., (Boyd and Vandenberghe 2004) (El Ghaoui and Lebret 1997)
Partial Compression new: (3) new: (5) new: (6)
Full Compression e.g., (Drineas et al. 2011) e.g., (Boyd and Vandenberghe 2004) new (but algo. via El Ghaoui)

Table 1: Our work in context of previous results. The equation numbers point to the objective functions for each method.

Using Lemma 1, the robust partially-compressed estima-
tor xRPC is the optimal solution to:

min
x

1

2
(‖Px‖+ ρ‖x‖)2 − bTAx . (8)

We now analyze the structure of the optimal solution and
point to connections and differences in comparison to results
from ridge regression.

Theorem 1. The optimal solution xRPC to (8) must satisfy:

xRPC =
1

α+ ρ β
(α−1 PT P + ρ β−1 I)−1AT b , (9)

such that α = ‖PxRPC‖ and β = ‖xRPC‖, or xRPC = 0 if
ATb = 0.

Proof. The theorem follows the first-order optimality condi-
tions. The function (8) is everywhere convex, and differen-
tiable everywhere except at x = 0. We can show the solution
x = 0 is only optimal if ATb = 0. The objective at x = 0
is 0. If ATb 6= 0, then for sufficiently small t > 0, the point
tATb gives a strictly negative objective (since t2 = o(t) as
t → 0), hence x = 0 is not optimal. If x 6= 0, the following
first-order conditions are necessary and sufficient:

0 = (‖Px‖+ ρ ‖x‖)
(
PTPx

‖Px‖
+ ρ

x

‖x‖

)
−ATb,

from which we derive (9). The theorem follows directly
from setting α and β to the required values.

Theorem 1 shows that the optimal solution to the robust
partially-compressed least-squares problem is structurally
similar to a ridge regression solution. The two main differ-
ences are that there are two parameters, α and β, and these
parameters are data-dependent. When setting ρ to 1—which
is what we have done in our empirical study, one advan-
tage over ridge regression would be that there is no need to
fine-tune the regularization parameter, µ, and one can rely
on only data-driven parameters α and β. Even when there
is a need to fine-tune the free parameter ρ in RPC—which
we have not done in our results and simply set ρ to be equal
to 1—ρ has a structural meaning associated with it; ρ is the
size of the uncertainty set in (6) and (7) and one can quickly
build an intuition behind how to set its value, which is not the
case for the regularization parameter µ. In a current investi-
gation, which is out of the scope of this paper, we are build-
ing connections between ρ and the compression dimension
m, which will enable us to appropriately set ρ as a function
of m.

Note that Theorem 1 does not provide a method to calcu-
late xRPC, since α and β depend on xRPC. However, given

that (8) is a convex optimization problem, we are able
to reformulate it as the following second-order conic pro-
gram (SOCP) in standard form:

min
x,t,u,z

1

2
z − bTAx

s.t. ‖Px‖ ≤ t , ρ ‖x‖ ≤ u ,
∥∥∥∥ t+ u
z − 1

4

∥∥∥∥ ≤ z +
1

4
.

(10)

The last constraint in this program translates to z ≥ (t +
u)2.

While efficient polynomial-time algorithms exists for
solving SOCP problems, they are typically significantly
slower than solving least-squares. Therefore, to achieve
practical speedup, we need to derive a more efficient algo-
rithm. In fact we propose a reduction to a one-dimensional
optimization problem in the following section.

Efficient Computation of RPC
In this section, we describe a faster approach than solving
the SOCP problem in (10) based on a reduction to a one-
dimensional search problem.

Input: A, b, Φ, P = ΦA, ρ
Output: x
U ΣV T ← SVD(P );
τ ← ρ ‖b‖2/2 ; // Initialization
// Solve x← argminx hτk (x)
while | ‖Σy‖γk − 1| ≤ ε do

γk ← arg minγ φ(γ) =
∑N
i=1

b̄2i

(γσ2
i+ρ)2

− 1

yk ← 1
τ
V T(PTP + γkI)−1ATb ;

// When τ = τ? then α = ‖Σy‖
τk+1 ← τk‖Σyk‖ γk ;

end
// Recover the solution
α← τ

1+ργ?
; // Using: α+ ρ β = τ

β ← τ−α
ρ

;
x← 1

β
V y ;

Algorithm 1: Efficient Algorithm for Solving RPC

First, we reformulate the optimization problem (8) as:

min
x,t

1

2
t2 − bTAx s.t. ‖Px‖+ ρ‖x‖ ≤ t (11)

Our goal is to derive and then solve the dual problem. The
Lagrangian of (11) is

L(x, t, τ) =
1

2
t2 − bTAx+ τ (‖Px‖+ ρ‖x‖ − t)

Since strong duality conditions hold, we solve the one-
dimensional dual maximization problem maxτ≥0 g(τ)



where g(τ) is given as

min
t

(
1

2
t2 − τt

)
+ min

x
τ (‖Px‖+ ρ‖x‖)− bTAx

= −1

2
τ2 + min

x
τ (‖Px‖+ ρ‖x‖)− bTAx︸ ︷︷ ︸

hτ (x)

. (12)

The second equality follows since ‖Px‖ + ρ‖x‖ = t = τ
for the optimal primal and dual solution. Observe that hτ (x)
is positive homogeneous in x and therefore:

min
x

hτ (x) =


−∞ τ < τ? (Case 1)
0 τ = τ? (Case 2)
0 τ > τ? (Case 3)

(13)

where τ? ≥ 0 is the optimal dual value.
Intuitively, to solve for the optimal solution, we need to

find the maximal value of τ such that hτ (x) = 0. Appendix
derives the approach that is summarized in Algorithm 1. Ob-
serve that the function hτ (x) is convex. The main idea is to
reduce the optimization to a single-dimensional minimiza-
tion and solve it using Newton method. We also use the SVD
decomposition of P to make the search more efficient so that
only a single O(N3) step is needed.

In terms of the computational complexity, Algorithm 1
requires O(mN2 + N3) operations. All operations inside
of the loop are dominated by O(N3). The number of itera-
tion that is needed depends on the desired precision. Table 2
compares the asymptotic computational complexity of the
proposed robust partial compression with the complexity of
computing the full least-squares solution.

Approximation Error Bounds
Analysis of solution quality is known for the fully com-
pressed least-squares problem (e.g. (Pilanci and Wainwright
2014)). In this section, we derive bounds for the partially-
compressed least-squares regression.

First, the following simple analysis elucidates the relative
trade-offs in computing full or partial projection solutions.
Let x? be the solution to the full least-squares problem (3)
and z? = b − Ax? be the residual. Recall that ATz? = 0.
Now when xCLS is the solution to (2), then:

xCLS = (ATΦTΦA)−1ATΦTΦb

= x? + (ATΦTΦA)−1ATΦTΦz?

On the other hand, the solution xPCLS to (4) satisfies:

xPCLS = (ATΦTΦA)−1ATb = (ATΦTΦA)−1ATAx?

The error in xCLS is additive and is a function of the remain-
der z?. The error in xPCLS is, on the other hand, multiplica-
tive and is independent of z?. As a result, a small z? will
favor the standard fully compressed least-squares formula-
tion, and a large z? will favor the new partial compressed
one.

We will now show that, in the sense of the following defi-
nition, the residual of the optimal solution of the partial pro-
jection problem is close to the residual of the true solution
of the least-squares problem.

Definition 1 (ε-optimal solution). We say that a solution x̂
is ε-optimal if it satisfies

‖A(x̂− xLS)‖
‖AxLS‖

≤ ε, ε ∈ (0, 1) (14)

where xLS is an optimal solution of the original high-
dimensional system (1).

For sub-Gaussian and ROS sketches, we can show that
results in (Pilanci and Wainwright 2014) can be extended to
bound approximation errors for partially-compressed least-
squares based on the definition of ε-optimal above. These
results are nearly independent of the number of rows M in
the data matrix (except for how these affect ‖AxLS‖). The
main guarantees for unconstrained least-squares are given in
the following theorem (proof in appendix) which provides
an exponential tail bound:

Theorem 2 (Approximation Guarantee). Given a normal-
ized sketching matrix Φ ∈ Rm×M , and universal constants
c0, c

′
0, c1, c2, the sketched solution xPCLS (4) is ε-optimal

(14) with probability at least 1− c1 exp(−c2mε2), for any
tolerance parameter ε ∈ (0, 1), when the sketch or compres-
sion size m is bounded below by

(i) m > c0
rank(A)

ε2 , if Φ is a scaled sub-Gaussian sketch

(ii) m > c′0
rank(A)

ε2 log4(N), if Φ is a scaled randomized or-
thogonal systems (ROS) sketch

By “scaled” sketch, we mean E(ΦTΦ) = I , since for
partial compression, scaling Φ does affect the answer, un-
like full compression. For example, in the Gaussian case,
we draw the entries of Φ from N (0, 1

m ) instead of N (0, 1).

Empirical Results
Our focus in this section is on the improvement of the so-
lution error in comparison with the non-compressed least
squares solution as well as the improvement over regular full
compression.

We also investigate the computational speed of the algo-
rithms and show that partial compression is just as fast as
full compression (and hence sometimes faster than standard
least-squares), and that robust partial compression is only
roughly twice as slow (and asymptotically it is the same
cost).

For completeness, we compare with (ridge-)regularized
and robust versions of the standard compressed LS prob-
lem (2). The robust version is solved following the algorithm
outlined in (El Ghaoui and Lebret 1997) since this can be
treated as a robust ordinary least squares problem.

We first use a data set from the National Health Inter-
view Survey from 1992, containing 44085 rows and only
9 columns; since it is highly overcomplete and contains po-
tentially sensitive data, it is a good candidate for sketching.
To test over this, we do 100 realizations of 5000 randomly
chosen training data and 10000 testing data, and for each
realization draw 50 random Walsh-Hadamard sketches with
m = 10N .

The residual on the testing data (median over all 5000 re-
alizations) is shown in Fig. 1. For robust variants, we set µ



Least Squares Robust Partial Compression

Compression Gaussian Walsh-Hadamard Counting
Comp. Time O(mM N) O(M logMN) O(nnz)
Solution Time O(M N2) O(mN2 +N3) O(mN2 +N3) O(mN2 +N3)
Total Time O(M N2) O(mM N +mN2) O(M logMN +mN2) O(nnz +mN2)

Table 2: Asymptotic computational complexity of various compression methods. Symbol nnz denotes the number of non-zero
elements in A we are assuming that m� N and M � N .
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Figure 2: For very high compression (m/M very small),
with even m = N , robustness/regularization is beneficial.

to be 5 times the minimum eigenvalue of ATΦTΦA, and for
robust variants we set ρ = 1.

Figure 1 presents the results similar to a CDF or a “perfor-
mance profile” as used in benchmarking software; a smaller
area above the curve indicates better performance. A point
such as (0.5, 1.02) means that on half the simulations, the
method achieved a residual within a factor of 1.02 of the
least-square residual.

There are two clear observations from the Fig. 1: par-
tial compression gives lower residuals than full compres-
sion, and the regularized and robust variants may do slightly
worse in the lower-left (i.e., more bias) but better in the
worst-case upper-right (i.e., less variance). Put another way,
the robust and regularized versions have stronger tail bounds
than the standard versions. We also see a slight benefit of ro-
bustness over regularization, though the effect depends on
how µ and ρ are chosen.

Figure 3 shows the breakdown of timing for the individual
parts of each of the algorithms that we consider. The com-
pression method used the counting sketch in all compressed
methods with the exception of Blendenpik (mex) which used
the Walsh-Hadamard random matrix vis the Spiral WHT
Package (?), and both Blendenpik (Avron, Maymounkov,
and Toledo 2010) versions are set to use low-accuracy for
the LSQR step. The matrixA is 5 ·104×500 random matrix
with condition number 106.

Fig. 2 investigates the effect of the number of rows m of
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Figure 3: Breakdown of the timing of the parts of the algo-
rithms. Note that the time for A\b continues off the chart.

the compressed matrix. As expected, the residual quickly de-
teriorates when m is small (note the logarithmic scale). Em-
ploying regularization decreases the residual significantly.
Finally, the robust partially-compressed least squares leads
to a further improvement over regularization. This is ex-
pected since regularization can be seen as a form of an ap-
proximation to the robust solution.

We also evaluated our new methods on other synthetic
and realistic problems. The additional results also show
that robust partial least squares can lead to significant im-
provements in comparison with the standard projected least
squares. Please see the extended version of the paper for
these results (?).

Conclusion
We developed two new models to address the issue of
noise and errors introduced to solutions of compressed least-
squares problems; the partially-compressed and the robust
partially-compressed least-squares models. Our models re-
duce the error introduced by random projection, or sketch-
ing, while retaining the computational benefits of matrix
compression. The robust model specifically captures the
error structure introduced by partial compression, unlike
ridge regression with the partially compressed model. Our
experimental results indicate that the robust partial com-
pression model outperforms both the partially-compressed
model (with or without regularization) as well as the fully
compressed one. Partial compression alone can also signif-
icantly improve the solution quality over full compression.
We also derived the first approximation-error bounds for the



partially-compressed least-squares model.
While the partially-compressed least-squares retains the

same computational complexity as full compression, the ro-
bust approach introduces an additional difficulty in solving
the convex optimization problem. By introducing an algo-
rithm based on one-dimensional parameter search, even the
robust partially-compressed least-squares can be faster than
ordinary least-squares.

Appendix
Minimization of hτ in Algorithm 1
In this section, we describe how to efficiently minimize
hτ (x). Recall that hτ is defined in (12). Now consider the
problem of computing argminhτ (x) for a fixed τ . In case
2 of (13), there exists a solution x 6= 0 and therefore the
function is differentiable and the optimality conditions read

τ

(
PTP

α
+ ρ

I

β

)
x = ATb, α = ‖Px‖, β = ‖x‖ .

(15)
The optimality conditions are scale invariant for x 6= 0 and
therefore we can construct a solution such that β = ‖x‖ =
1.

Let V DV T = PTP be an eigenvalue decomposition of
PTP , i.e., Dii = di = σ2

i are the squared singular values
of P , and V are the right singular vectors of P = UΣV T.
We make the change-of-variables to y = V Tx (hence ‖y‖ =
‖x‖) and define b = V TATb, which gives an equation for y
which is separable if α is fixed. We thus need to solve

τ(γD + ρI)y = b (16)
1 = β = ‖y‖ (17)

1/γ = α = ‖Σy‖ (18)

Since di ≥ 0 the solution of (16) is unique for a given γ.
Therefore, the equations (16)-(18) are satisfied if and only if
there exists a γ such that the solution to (16) satisfies both
(17) and (18).

We use Newton’s method to compute γ that satisfies (16).
Define

φ(γ) = τ−2
N∑
i=1

b
2

i

(γσ2
i + ρ)

2 − 1

so (16) and (17) are satisfied if φ(γ) = 0 for γ ≥ 0. We note
that

φ′(γ) = −2τ−2
N∑
i=1

σ2
i b

2

i

(γσ2
i + ρ)

3

which is always negative when γ ≥ 0, hence φ is monotonic
and we are guaranteed that there is a unique root (i.e., it is
analogous to convex minimization) in the region γ ≥ 0. We
can apply any variant of safe-guarded Newton style methods
to solve for the root.

Let x = V Ty for y the optimal solution of the Newton
method optimization. We now check if (18) is satisfied for
this particular value of γ ≡ α−1 to determine which case of
(13) we are in. If (18) is satisfied and hτ (x) = 0 that means
that we are in Case 2 and τ = τ?. That is, the complemen-
tary slackness conditions are satisfied and the minimum of

hτ (x) is 0. If, on the other hand, hτ (x) < 0 then we are
in Case 1 and scaling x yields an arbitrarily small value. Fi-
nally, if y does not satisfy (18), then the optimal solution is
y = 0 and we are in Case 3. Note that hτ (x) is not differen-
tiable at x = 0.

Finally, if we are in Case 2, then x is a scaled optimal
solution. To recover the optimal solution, we use t = τ to
appropriately scale x. Specifically, since we took β = 1 and
worked with γ ≡ α−1, this was equivalent to working with
γ = β/α so we can recover the properly scaled β? = α?γ
and hence α? = (1 + ργ)−1τ?.

Proof of Theorem 2
Proof. The proof uses the stochastic arguments of (Pilanci
and Wainwright 2014) directly, and modifies their determin-
istic argument (Lemma 1). For brevity, write x̂ = xPCLS
and x? = xLS. From the optimality of x̂ to the partial-
compressed least squares problem (3), we have:

‖ΦAx̂‖2 ≤ ‖ΦAx‖2 + 2〈A (x̂− x), b〉. (19)
for all x, and in particular x = x?. From the optimality of
x? to equation (1), the gradient at x? is zero so we have
〈Ax,Ax?− b〉 = 0 for any x, and hence, using x = x̂−x?,
re-arranging this gives

〈A(x̂− x?), b〉 = 〈A(x̂− x?), Ax?〉 (20)
Thus
1

2
‖ΦA (x̂− x?)‖2

=
1

2
‖ΦAx̂‖2 +

1

2
‖ΦAx?‖2 − 〈ΦAx̂,ΦAx?〉

≤ ‖ΦAx?‖2 + 〈A (x̂− x?), b〉 − 〈ΦAx̂,ΦAx?〉
= 〈A (x̂− x?), b〉 − 〈ΦA (x̂− x?),ΦAx?〉
= 〈A (x̂− x?), (I − ΦTΦ)Ax?〉

where the first inequality follows from (19) and the final
equality follows from (20).

Normalizing both sides of the last inequality appropri-
ately, we obtain:

1

2

‖ΦA (x̂− x?)‖2

‖A (x̂− x?)‖2︸ ︷︷ ︸
U1

‖A (x̂− x?)‖

≤ ‖Ax?‖
〈

A (x̂− x?)
‖A (x̂− x?)‖

, (I − ΦTΦ)
Ax?

‖Ax?‖

〉
︸ ︷︷ ︸

U2

To complete the proof, we need to show that 2 U2

U1
is bounded

above by ε ∈ (0, 1) for both the sub-Gaussian sketch and the
ROS sketch. Define Z1(A) = infv∈range(A), ‖v‖=1 ‖Φv‖2
and Z2(A) = supv∈range(A), ‖v‖=1

∣∣〈u, (ΦTΦ− I
)
v
〉∣∣

where u is any fixed vector of norm 1. Then U2/U1 ≤
Z2/Z1.

Taking the scaling of Φ into account, then Z2/Z1 < ε if:
(a) Φ is a scaled sub-Gaussian sketch and condition (i) of the
theorem holds, since we apply Lemmas 2 and 3 of (Pilanci
and Wainwright 2014); or (b) Φ is a scaled ROS sketch and
condition (ii) of the theorem holds, since we apply Lemmas
4 and 5 of (Pilanci and Wainwright 2014).
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