Logistic Regression
and Maximum Likelihood

Marek Petrik

Feb 09 2017
So Far in ML

- Regression vs Classification
- Linear regression
- Bias-variance decomposition
- Practical methods for linear regression
Simple Linear Regression

- We have only one feature

\[Y \approx \beta_0 + \beta_1 X \quad Y = \beta_0 + \beta_1 X + \epsilon \]

- Example:

\[\text{sales} \approx \beta_0 + \beta_1 \times \text{TV} \]
Multiple Linear Regression
Types of Function f

Regression: continuous target

$$f : \mathcal{X} \rightarrow \mathbb{R}$$

Classification: discrete target

$$f : \mathcal{X} \rightarrow \{1, 2, 3, \ldots, k\}$$
Today

- Why not use linear regression for classification
- Logistic regression
- Maximum likelihood principle
- Maximum likelihood for linear regression
- Reading:
 - ISL 4.1-3
 - ESL 2.6 (max likelihood)
Examples of Classification

1. A person arrives at the emergency room with a set of symptoms that could possibly be attributed to one of three medical conditions. Which of the three conditions does the individual have?
Examples of Classification

2. An online banking service must be able to determine whether or not a transaction being performed on the site is fraudulent, on the basis of the user's IP address, past transaction history, and so forth.
Examples of Classification

1. A person arrives at the emergency room with a set of symptoms that could possibly be attributed to one of three medical conditions. Which of the three conditions does the individual have?

2. An online banking service must be able to determine whether or not a transaction being performed on the site is fraudulent, on the basis of the user's IP address, past transaction history, and so forth.

3. On the basis of DNA sequence data for a number of patients with and without a given disease, a biologist would like to figure out which DNA mutations are deleterious (disease-causing) and which are not.
Logistic regression + clever function engineering
Predicting Default

\[\text{default} \approx f(\text{income}, \text{balance}) \]
default \approx f(\text{income}, \text{balance})

Boxplot

Predicting Default
Casting Classification as Regression

- **Regression**: \(f : X \to \mathbb{R} \)
- **Classification**: \(f : X \to \{1, 2, 3\} \)

But \(\{1, 2, 3\} \subseteq \mathbb{R} \)

Do we even need classification?

Yes!

Regression: Values that are close are similar

Classification: Distance of classes is meaningless
Casting Classification as Regression

- **Regression**: $f : X \rightarrow \mathbb{R}$
- **Classification**: $f : X \rightarrow \{1, 2, 3\}$

- But $\{1, 2, 3\} \subseteq \mathbb{R}$
- Do we even need classification?
Casting Classification as Regression

- **Regression**: \(f : X \rightarrow \mathbb{R} \)
- **Classification**: \(f : X \rightarrow \{1, 2, 3\} \)

- But \(\{1, 2, 3\} \subseteq \mathbb{R} \)
- Do we even need classification?

- Yes!
- **Regression**: Values that are close are similar
- **Classification**: Distance of classes is meaningless
Casting Classification as Regression: Example

- Predict possible diagnosis:

\[\{ \text{stroke, overdose, seizure} \} \]

- Assign class labels:

\[
Y = \begin{cases}
1 & \text{if stroke} \\
2 & \text{if overdose} \\
3 & \text{if seizure}
\end{cases}
\]

- Fit linear regression
Casting Classification as Regression: Example

- Predict possible diagnosis:
 \{stroke, overdose, seizure\}

- Assign class labels:
 \[
 Y = \begin{cases}
 1 & \text{if stroke} \\
 2 & \text{if overdose} \\
 3 & \text{if seizure}
 \end{cases}
 \]

- Fit linear regression

- **Make predictions:** If uncertain whether symptoms point to stroke or seizure, we predict overdose
Linear Regression for 2-class Classification

\[Y = \begin{cases} 1 & \text{if default} \\ 0 & \text{otherwise} \end{cases} \]

Linear regression

Logistic regression

\[\mathbb{P}[\text{default} = \text{yes} \mid \text{balance}] \]
Logistic Regression

▶ Predict **probability** of a class: \(p(X) \)

▶ Example: \(p(\text{balance}) \) probability of default for person with balance

▶ **Linear regression:**

\[
p(X) = \beta_0 + \beta_1
\]

▶ **logistic regression:**

\[
p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}
\]

▶ the same as:

\[
\log \left(\frac{p(X)}{1 - p(X)} \right) = \beta_0 + \beta_1 X
\]

▶ **Odds:** \(\frac{p(X)}{1-p(X)} \)
Logistic Function

\[y = \frac{e^x}{1 + e^x} \]
Logistic Function

\[\log \left(\frac{p(X)}{1 - p(X)} \right) \]
Logistic Regression

\[P[\text{default} = \text{yes} | \text{balance}] = \frac{e^{\beta_0 + \beta_1 \text{balance}}}{1 + e^{\beta_0 + \beta_1 \text{balance}}} \]

Linear regression

Logistic regression
Estimating Coefficients: Maximum Likelihood

- **Likelihood**: Probability that data is generated from a model
 \[\ell(\text{model}) = \mathbb{P}[\text{data} \mid \text{model}] \]

- Find the most likely model:
 \[\max_{\text{model}} \ell(\text{model}) = \max_{\text{model}} \mathbb{P}[\text{data} \mid \text{model}] \]

- Likelihood function is difficult to maximize
- Transform it using log (strictly increasing)
 \[\max_{\text{model}} \log \ell(\text{model}) \]

- Strictly increasing transformation does not change maximum
Example: Maximum Likelihood

- Assume a coin with p as the probability of heads
- **Data**: h heads, t tails
- The likelihood function is:

$$\ell(p) = p^h (1 - p)^t.$$
Likelihood Function: 2 coin flips

Heads $h = 1$

Tails $t = 1$
Likelihood Function: 20 coin flips

Heads $h = 10$ Tails $t = 10$
Likelihood Function: 200 coin flips

Heads $h = 100$
Tails $t = 100$
Maximizing Likelihood

- Likelihood function is not concave: hard to maximize

\[\ell(p) = p^h (1 - p)^t . \]

- Maximize the log-likelihood instead

\[\log \ell(p) = h \log(p) + t \log(1 - p) . \]
Log-likelihood: Biased Coin

heads \(h = 20 \) \hspace{1cm} **tails** \(t = 50 \)
Maximize Log-likelihood

- Log-likelihood:

\[
\log \ell(p) = h \log(p) + t \log(1 - p).
\]
Maximize Log-likelihood

▶ Log-likelihood:

\[\log \ell(p) = h \log(p) + t \log(1 - p). \]

▶ Maximum where derivative = 0

▶ Derivative:

\[\frac{d}{dp} h \log(p) + t \log(1 - p) = \frac{h}{p} - \frac{t}{1 - p}. \]
Maximize Log-likelihood

- **Log-likelihood:**
 \[
 \log \ell(p) = h \log(p) + t \log(1 - p).
 \]

- **Maximum where derivative = 0**
- **Derivative:**
 \[
 \frac{d}{dp} \left[h \log(p) + t \log(1 - p) \right] = \frac{h}{p} - \frac{t}{1 - p}.
 \]

- **Maximum likelihood solution:**
 \[
 p = \frac{h}{h + 1}.
 \]
Max-likelihood: Logistic Regression

- Features x_i and labels y_i
- Likelihood:

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i))$$

- Log-likelihood:

$$\ell(\beta_0, \beta_1) = \sum_{i:y_i=1} \log p(x_i) + \sum_{i:y_i=0} \log(1 - p(x_i))$$

- Concave maximization problem
- Can be solved using gradient descent
Multiple Logistic Regression

- Multiple features

\[p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_m X_n}}{1 + e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_m X_n}} \]

- Equivalent to:

\[\log \left(\frac{p(X)}{1 - p(X)} \right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_m X_n \]
Multinomial Logistic Regression

- Predicting multiple classes:
 - Medical diagnosis
 - \[Y = \begin{cases}
 1 & \text{if stroke} \\
 2 & \text{if overdose} \\
 3 & \text{if seizure}
 \end{cases} \]

- Predicting which products customer purchases
- Straightforward generalization of simple logistic regression

\[
\frac{e^{c_1}}{1 + e^{c_1}} \Rightarrow \frac{e^{c_1}}{e^{c_1} + e^{c_2} + \ldots + e^{c_k}}
\]