
Matrix algebra and linear projections

Linear Regression

In the first part, we look at how multiple linear regression can be performed directly using linear algebra
using a single line of code.

Lets start with something very simple: linear regression with one feature. Recall that the goal of linear
regression is to find a function:

f(x) = β0 + β1 · x1

The notation can be simplified if we pretend that the intercept is simply a parameter for a feature x0 which
is always equal to 1.

f(x) = β0 · 1 + β1 · x1 = β0 · x0 + β1 · x1

Linear regression at its simplest is when there is one feature and with two data points: x1, x2 with targets
y1, y2. Finding the line that goes through these two values simply reduces to solving a system of linear
equations:

y1 = f(x1) = β0 · x1,0 + β1 · x1,1

y2 = f(x2) = β0 · x2,0 + β1 · x2,1

We also can write this system of linear equations as matrix multiplication:[
y1
y2

]
︸︷︷︸
y

=
[
x1,0 x1,1
x2,0 x2,1

]
︸ ︷︷ ︸

X

[
β0
β1

]
︸︷︷︸
β

The matrix X here is called the design matrix and the general linear system is:

y = Xβ

If there are K features and N data points then the dimensions of X are N × (K + 1).

Computing the solution to our linear system with two data points is as easy as computing the inverse matrix
X−1 to X and multiplying both sides by this inverse matrix:

X−1y = X−1Xβ = β

Consider now a concrete example with two data points. The value of the feature is: x1,1 = 2 and x2,1 = 5.
The target is y1 = 7 and y2 = 3. The design matrix X is then (don’t forget the intercept feature):
X <- rbind(c(1,2),

c(1,5))
print(X)

[,1] [,2]
[1,] 1 2
[2,] 1 5

The target vector y is:
y <- c(7,3)
print(y)

[1] 7 3

The two data points plotted look as follows:

1

plot(X[,2],y); grid()

2.0 2.5 3.0 3.5 4.0 4.5 5.0

3
4

5
6

7

X[, 2]

y

We can now invert the matrix and get our solution to the linear regression problem!
Xinv <- solve(X)
print(Xinv)

[,1] [,2]
[1,] 1.6666667 -0.6666667
[2,] -0.3333333 0.3333333

Lets double check that this is indeed a proper matrix inverse.
Xinv %*% X

[,1] [,2]
[1,] 1 0
[2,] 0 1

X %*% Xinv

[,1] [,2]
[1,] 1 0
[2,] 0 1

Yes the inverse works!

Computing the coefficients is now super easy:
beta <- Xinv %*% y
print(beta)

[,1]
[1,] 9.666667
[2,] -1.333333

Lets make sure that this line is in fact correct and goes through both of our data points.

2

plot(X[,2],y); grid()
abline(beta[1], beta[2])

2.0 2.5 3.0 3.5 4.0 4.5 5.0

3
4

5
6

7

X[, 2]

y

Does the built-in linear regression give us the same result?
lm(y ~ X[,2])$coeff

(Intercept) X[, 2]
9.666667 -1.333333

c(beta)

[1] 9.666667 -1.333333

Yes! The results are the same.

Questions:

1. How can we compute the the parameters β when there is only a single data point?
2. How about when there are more data points than features?

OK, lets try 4 data points.
X <- rbind(c(1,2),

c(1,5),
c(1,3),
c(1,2))

y <- c(7,3,5,6)
plot(X[,2],y); grid()

3

2.0 2.5 3.0 3.5 4.0 4.5 5.0

3
4

5
6

7

X[, 2]

y

It does not look like one can find a line through these points. The system of linear equations will not have a
solution. The error will happen when we try to invert the new design matrix.
> solve(X)
Fails with: Error in solve.default(X) : 'a' (4 x 2) must be square

The answer is to find the line that will minimize the RSS.

Minimizing RSS

Recall that RSS is the residual sum of squares:

RSS =
n∑
i=1

(yi − f(xi))2

It would be nice to be able to write it in a form of linear algebra. There is actually a tool for this called the
L2-norm or the Euclidean distance:

‖z‖2
2 =

n∑
i=1

z2
i = zT z

Using linear algebra, the RSS can be written much more compactly.

RSS = ‖y −Xβ‖2
2 = (y −Xβ)T (y −Xβ) = yT y − 2yTXβ + βTXTXβ

Linear regression chooses β to minimize the RSS and thus we have to solve the following optimization problem.

min
β
‖y −Xβ‖2

2

4

Luckily, this is a convex minimization problem. All we have to do is to look for a value of β in which the
gradient is zero.

∇β ‖y −Xβ‖2
2 = 0

∇β
(
yT y − 2yTXβ + βTXTXβ

)
= 0

∇β
(
−2yTXβ + βTXTXβ

)
= 0

−2XT y + 2XTXβ = 0
XTXβ = XT y

β = (XTX)−1XT y

So what if X is not square? It is not a problem. If the dimensions of X are N × (K + 1) then the dimensions
of X are (K + 1)× (K + 1) which is always a square.

Question: Can any square matrix be inverted?

The implementation of linear regression is now really just a single line!
beta <- solve(t(X) %*% X) %*% t(X) %*% y
print(beta)

[,1]
[1,] 8.750000
[2,] -1.166667

To make sure that everything is OK, we should compare our implementation with the built-in linear regression.
beta_in <- lm(y ~ X[,2])$coeff
print(beta_in)

(Intercept) X[, 2]
8.750000 -1.166667

And finally, the plot.
plot(X[,2],y); grid()
abline(beta[1], beta[2])

5

2.0 2.5 3.0 3.5 4.0 4.5 5.0

3
4

5
6

7

X[, 2]

y

Computational Issues

The first rule of numerical linear algebra is: never compute a matrix inverse. Computing a matrix
inverse is:

1. Slow: There are faster ways of solving systems of linear equations
2. Unstable: Linear algebra implementation if finite precision can lead to disastrously large errors for

ill-conditioned matrices

Luckily, there are many other ways of computing

β = (XTX)−1XT y

solve(t(X) %*% X) %*% t(X) %*% y

[,1]
[1,] 8.750000
[2,] -1.166667

The most common alternatives are:

1. Gaussian elimination: Directly solve the system of linear equation. This is related to how a matrix
inverse is often computed, but is faster by about a factor of K and much more numerically stable.
solve(t(X) %*% X, t(X) %*% y)

[,1]
[1,] 8.750000
[2,] -1.166667

2. Cholesky decomposition (LDL): The idea is that for any positive-definite symmetric matrix A = UTU
where U is an upper triangular matrix. Triangular matrices are very easy to invert and the procedure is
computationally stable. MatrixXTX is symmetric and positive definite. Compute the Cholesky decomposition
of XTX.

6

The symmetric matrix is:
t(X) %*% X

[,1] [,2]
[1,] 4 12
[2,] 12 42

The Cholesky decomposition is:
U <- chol(t(X) %*% X)
U

[,1] [,2]
[1,] 2 6.00000
[2,] 0 2.44949

t(U) %*% U

[,1] [,2]
[1,] 4 12
[2,] 12 42

The linear regression can now be expressed as:
chol2inv(U) %*% t(X) %*% y

[,1]
[1,] 8.750000
[2,] -1.166667

3. QR decomposition: Any matrix can be decomposed to A = QR where Q is an orthogonal matrix and
R is upper triangular. Orthogonal matrix satisfies QQ = I. The transpose of Q is also its inverse. QR is also
stable and fast. We do not need to even compute XTX but instead compute the QR decomposition of X.

When X = QR then
XTX = RTQTQR = RTR

qr.R(qr(X))

[,1] [,2]
[1,] -2 -6.00000
[2,] 0 -2.44949

Notice that R is the same as U from the Cholesky decomposition and is easier to compute.
R <- qr.R(qr(X))
chol2inv(R) %*% t(X) %*% y

[,1]
[1,] 8.750000
[2,] -1.166667

Column view of linear regression

Another way to view linear regression is a computing linear combination of the columns. Let Xi be the vector
that represent the feature i for all samples. Then we are looking for a function that minimizes RSS for a
linear combination of the feature vectors and the target.

7

min
β
‖y −X1β1 − . . .−XKβK‖2

2

Before discussing some benefits, lets visualize the simple example from before.
Xs <- rbind(c(1,2),

c(1,5))
ys <- c(7,3)

The standard row view looks at each row as a data point. This is the plot (ignoring the intercept feature).
The goal is again to connect the two points using a line.
plot(Xs[,2],ys); grid()

2.0 2.5 3.0 3.5 4.0 4.5 5.0

3
4

5
6

7

Xs[, 2]

ys

The col-
umn view looks at each feature as a vector. Now, we include the intercept feature and get three vectors,
including y. The goal is to linearly combine the dashed vectors to get the solid one.
plot(NULL, xlab="", ylab="", xlim=c(0,9), ylim=c(0,9)); grid();
arrows(0,0,Xs[1,1], Xs[2,1],lty=2)
arrows(0,0,Xs[1,2], Xs[2,2],lty=2)
arrows(0,0,ys[1],ys[2])

8

0 2 4 6 8

0
2

4
6

8

This view can help to see, for example, that adding a feature that is linearly dependent will not reduce the
RSS. As an example, consider our previous design matrix X and add another feature.
Y <- cbind(X, c(3,6,5,8))
Y

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 1 5 6
[3,] 1 3 5
[4,] 1 2 8

Compute the coefficients of linear regression (make sure to remove the intercept):
beta <- lm(y ~ Y - 1)$coeff
beta

Y1 Y2 Y3
9.6590909 -1.1363636 -0.1818182

Lets verify that the numbers really do add up. First the matrix of the values is:
sapply(1:3, function(i) {beta[i] * Y[,i]})

[,1] [,2] [,3]
[1,] 9.659091 -2.272727 -0.5454545
[2,] 9.659091 -5.681818 -1.0909091
[3,] 9.659091 -3.409091 -0.9090909
[4,] 9.659091 -2.272727 -1.4545455

rowSums(sapply(1:3, function(i) {beta[i] * Y[,i]}))

[1] 6.840909 2.886364 5.340909 5.931818
y

[1] 7 3 5 6

Does RSS decrease when we add a feature that is a linear combination of the others?

9

Z <- cbind(Y, Y[,2] + Y[,3])
Z

[,1] [,2] [,3] [,4]
[1,] 1 2 3 5
[2,] 1 5 6 11
[3,] 1 3 5 8
[4,] 1 2 8 10

Nope, it does not decrease the error at all.
summary(lm(y ~ Z - 1))$r.squared

[1] 0.9986631

summary(lm(y ~ Y - 1))$r.squared

[1] 0.9986631

PCA

PCA is all about Normal distributions and covariance matrices. First, lets look at some examples of points
generated from a normal distribution with different covariance matrices in 2 dimensions. That means that
there are two features. To keep things simple, we will just assume that the mean is 0.
mu <- c(0,0)

The simplest covariance matrix is just an identity matrix
Sigma <- rbind(c(1,0),

c(0,1))
Sigma

[,1] [,2]
[1,] 1 0
[2,] 0 1

Lets sample from this distribution. The result will look very much like the design matrix with rows
corresponding to data points and columns corresponding to features.
library(MASS)
samp <- mvrnorm(10, mu = mu, Sigma = Sigma)
samp

[,1] [,2]
[1,] 0.5260356 -1.91260774
[2,] 0.3849328 0.06332865
[3,] 0.5066759 0.27775044
[4,] -0.3893216 0.41255202
[5,] 0.9759629 -0.95466049
[6,] 0.2952234 1.31634827
[7,] 2.1714861 0.93101587
[8,] 0.5885391 -1.22551272
[9,] -0.4190722 -1.34902079
[10,] -1.0834928 0.16013688

10

samp <- mvrnorm(3000, mu = mu, Sigma = Sigma)
plot(samp, type="p", asp=1); grid()

−5 0 5

−
2

0
2

4

samp[,1]

sa
m

p[
,2

]

Sigma <- rbind(c(10,0),
c(0,1))

Sigma

[,1] [,2]
[1,] 10 0
[2,] 0 1

What happens when we choose a different matrix?
Sigma <- rbind(c(10,0),

c(0,1))
samp <- mvrnorm(3000, mu = mu, Sigma = Sigma)
plot(samp, type="p", asp=1); grid()

11

−10 −5 0 5 10

−
6

−
4

−
2

0
2

4

samp[,1]

sa
m

p[
,2

]

Sigma <- rbind(c(1,0),
c(0,10))

Sigma

[,1] [,2]
[1,] 1 0
[2,] 0 10

samp <- mvrnorm(3000, mu = mu, Sigma = Sigma)
plot(samp, type="p", asp=1); grid()

−20 −10 0 10 20

−
10

−
5

0
5

10

samp[,1]

sa
m

p[
,2

]

Computing PCA on this data is very simple – it is the axis with the highest variance and there are only to

12

choose from.
prcomp(samp)

Standard deviations:
[1] 3.1461883 0.9711661
##
Rotation:
PC1 PC2
[1,] -0.001367586 0.999999065
[2,] -0.999999065 -0.001367586

But what if the data is rotated?
Sigma <- rbind(c(3,2),

c(2,10))
Sigma

[,1] [,2]
[1,] 3 2
[2,] 2 10

samp <- mvrnorm(3000, mu = mu, Sigma = Sigma)
plot(samp, type="p", asp=1); grid()

−20 −10 0 10 20

−
10

−
5

0
5

10

samp[,1]

sa
m

p[
,2

]

PCA
can recover this rotation:
prcomp(samp)

Standard deviations:
[1] 3.232018 1.593288
##
Rotation:
PC1 PC2
[1,] 0.2584468 0.9660255
[2,] 0.9660255 -0.2584468

13

Lets check this visually:
prc <- prcomp(samp)
plot(samp, type="p", asp=1); grid()
abline(0,prc$rotation[2,1]/prc$rotation[1,1])
abline(0,prc$rotation[2,2]/prc$rotation[1,2])

−20 −10 0 10 20

−
10

−
5

0
5

10

samp[,1]

sa
m

p[
,2

]

How would we construct such a rotated covariance matrix? Lets say we want it to be with an angle of 45
degrees. Lets make the first principal component be:

v1 =
[
1
1

]
Question: What is the second principal component then?

Lets put them in a single matrix:

V = 1√
2

 | |
v1 v2
| |


v1 = sqrt(1/2) * c(1,1)
v2 = sqrt(1/2) * c(1,-1)
V = cbind(v1,v2)
V

v1 v2
[1,] 0.7071068 0.7071068
[2,] 0.7071068 -0.7071068

So, we would like the vector v1 behave really like the first unit vector [1, 0]. This is what the matrix inverse
is for: [

1
0

]
= V −1v1

14

t(V) %*% v1

[,1]
v1 1
v2 0

t(V) %*% v2

[,1]
v1 0
v2 1

Assume the unrotated covariance matrix:
Sigma <- rbind(c(10,0),

c(0,1))
Sigma

[,1] [,2]
[1,] 10 0
[2,] 0 1

The plot looks like this:
samp <- mvrnorm(3000, mu = mu, Sigma = Sigma)
prc <- prcomp(samp)
plot(samp, type="p", asp=1); grid()
abline(0,prc$rotation[2,1]/prc$rotation[1,1])
abline(0,prc$rotation[2,2]/prc$rotation[1,2])

−10 −5 0 5 10

−
6

−
4

−
2

0
2

4
6

samp[,1]

sa
m

p[
,2

]

We are now ready to construct the covariance matrix:
newSigma <- V %*% Sigma %*% t(V)
newSigma

[,1] [,2]

15

[1,] 5.5 4.5
[2,] 4.5 5.5

Lets plot it:
samp <- mvrnorm(3000, mu = mu, Sigma = newSigma)
Sigma = V %*% t(V)
prc <- prcomp(samp)
plot(samp, type="p", asp=1); grid()
abline(0,prc$rotation[2,1]/prc$rotation[1,1])
abline(0,prc$rotation[2,2]/prc$rotation[1,2])

−15 −10 −5 0 5 10 15

−
5

0
5

samp[,1]

sa
m

p[
,2

]

How can we recover the rotation?

How does PCA recover the rotation? In two easy steps.

1. Compute the covariance matrix from the data
2. Compute eigenvectors of the matrix. Looking for a linear transformation of the features that will give

us a diagonal matrix.

Lets start with the second step. If we have our covariance matrix, we can compute the eigenvalues and
eigen-vectors, which satisfy:

Ax = λx

The eigenvectors can be computed as follows:
eigen(Sigma)

$values
[1] 1 1
##
$vectors
[,1] [,2]
[1,] 0 -1
[2,] 1 0

16

This of eigenvectors as dimensions in which the matrix behaves as diagonal. A very nice property of symmetric
matrices (such as covariance matrices) is that their eigenvectors are orthogonal. So we can invert a matrix
just by transposing it. Now we can diagonalize the matrix using the eigenvectors:

V −1ΣV = D

where D is a diagonal matrix of eigenvalues and V is the matrix of eigenvectors. Because the eigenvectors of
a symmetric matrix are orthogonal, we get:

V TΣV = D

Question: Show how this is the same thing as when we constructed the covariance matrix before.
Sigma

[,1] [,2]
[1,] 1 0
[2,] 0 1

Lets see:
E = eigen(Sigma)
t(E$vectors) %*% Sigma %*% E$vectors

[,1] [,2]
[1,] 1 0
[2,] 0 1

newSigma

[,1] [,2]
[1,] 5.5 4.5
[2,] 4.5 5.5

E = eigen(newSigma)
E$vectors

[,1] [,2]
[1,] 0.7071068 -0.7071068
[2,] 0.7071068 0.7071068

What about our rotated newSigma?
t(E$vectors) %*% newSigma %*% E$vectors

[,1] [,2]
[1,] 10 0
[2,] 0 1

Nice, we were able to recover the rotation.

Question: How can we compute the covariance matrix from data?

What about? Homework: Show that this is true.

Σ = 1
n
XTX

Lets check numerically that it works.
(t(samp) %*% samp) / nrow(samp)

[,1] [,2]
[1,] 5.524972 4.627583
[2,] 4.627583 5.789070

17

	Linear Regression
	Minimizing RSS
	Computational Issues
	Column view of linear regression

	PCA

