Resampling Methods Cross-validation, Bootstrapping

Marek Petrik

2/21/2017

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani

So Far in ML

- Regression vs classification
- ► Linear regression
- Logistic regression
- Linear discriminant analysis, QDA
- Maximum likelihood

Discriminative vs Generative Models

Discriminative models

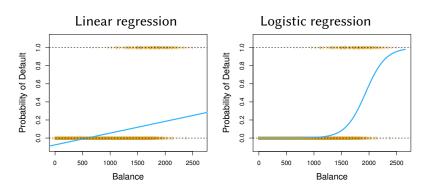
- Estimate conditional models $Pr[Y \mid X]$
- Linear regression
- Logistic regression

Generative models

- ▶ Estimate joint probability $Pr[Y, X] = Pr[Y \mid X] Pr[X]$
- Estimates not only probability of labels but also the features
- ▶ Once model is fit, can be used to generate data
- LDA, QDA, Naive Bayes

Logistic Regression

$$Y = \begin{cases} 1 & \text{if default} \\ 0 & \text{otherwise} \end{cases}$$

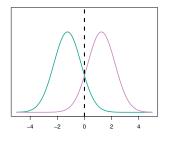


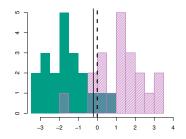
Predict:

$$Pr[default = yes \mid balance]$$

LDA: Linear Discriminant Analysis

 Generative model: capture probability of predictors for each label





- ► Predict:
 - 1. $\Pr[\text{balance} \mid \text{default} = yes] \text{ and } \Pr[\text{default} = yes]$
 - 2. $\Pr[\mathsf{balance} \mid \mathsf{default} = no]$ and $\Pr[\mathsf{default} = no]$
- ► Classes are normal: Pr[balance | default = yes]

Bayes Theorem

Classification from label distributions:

$$\Pr[Y = k \mid X = x] = \frac{\Pr[X = x \mid Y = k] \Pr[Y = k]}{\Pr[X = x]}$$

Example:

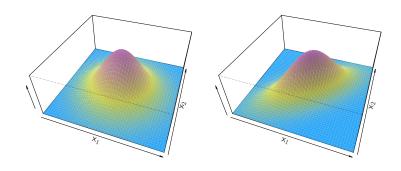
$$\frac{\Pr[\mathsf{default} = yes \mid \mathsf{balance} = \$100] =}{\frac{\Pr[\mathsf{balance} = \$100 \mid \mathsf{default} = yes] \Pr[\mathsf{default} = yes]}{\Pr[\mathsf{balance} = \$100]}$$

Notation:

$$\Pr[Y = k \mid X = x] = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

LDA with Multiple Features

Multivariate Normal Distributions:

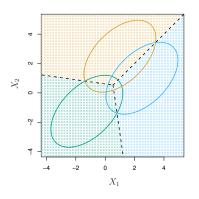


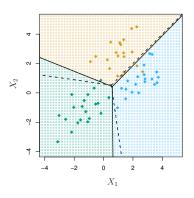
Multivariate normal distribution density (mean vector μ , covariance matrix Σ):

$$p(X) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

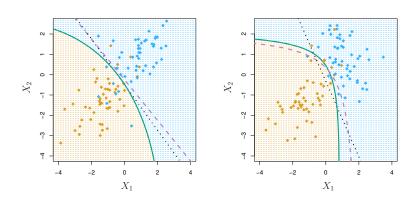
Multivariate Classification Using LDA

▶ Linear: Decision boundaries are linear





QDA: Quadratic Discriminant Analysis



Confusion Matrix: Predict default

		True		
		Yes	No	Total
Predicted	Yes	a	b	a+b
	No	c	d	c+d
	Total	a+c	b+d	N

Result of LDA classification: Predict default if

$$\Pr[\mathsf{default} = yes \mid \mathsf{balance}] > 1/2$$

		T		
		Yes	No	Total
Predicted	Yes	81	23	104
	No	252	9 644	9 896
	Total	333	9 667	10000

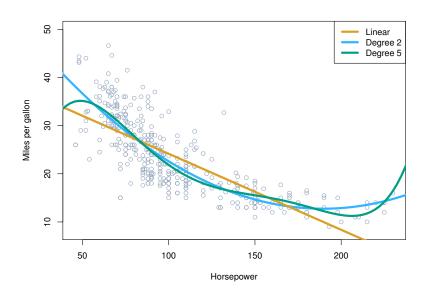
Today

- Successfully using basic machine learning methods
- ► Problems:
 - 1. How well is the machine learning method doing
 - 2. Which method is best for my problem?
 - 3. How many features (and which ones) to use?
 - 4. What is the uncertainty in the learned parameters?

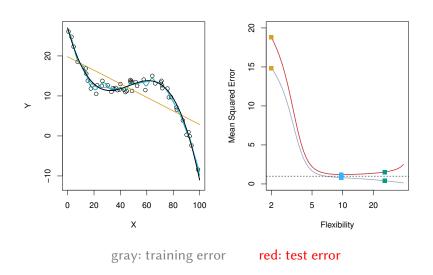
Today

- Successfully using basic machine learning methods
- ► Problems:
 - How well is the machine learning method doing
 - 2. Which method is best for my problem?
 - 3. How many features (and which ones) to use?
 - 4. What is the uncertainty in the learned parameters?
- Methods:
 - Validation set
 - 2. Leave one out cross-validation
 - 3. k-fold cross validation
 - 4. Bootstrapping

Problem: How to design features?



Benefit of Good Features

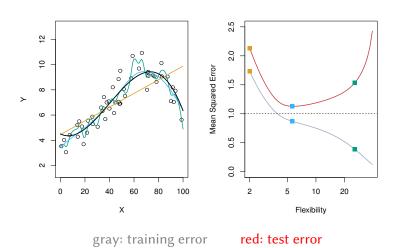


Just Use Training Data?

Using more features will always reduce MSE

Just Use Training Data?

- Using more features will always reduce MSE
- Error on the test set will be greater

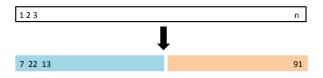


Solution 1: Validation Set

- Just evaluate how well the method works on the test set
- Randomly split data to:
 - 1. Training set: about half of all data
 - 2. Validation set (AKA hold-out set): remaining half

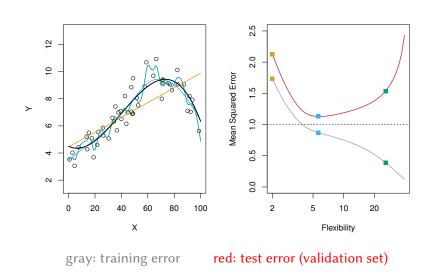
Solution 1: Validation Set

- Just evaluate how well the method works on the test set
- Randomly split data to:
 - 1. Training set: about half of all data
 - 2. <u>Validation set</u> (AKA hold-out set): remaining half



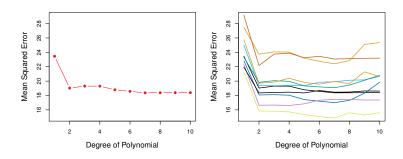
 Choose the number of features/representation based on minimizing error on validation set

Feature Selection Using Validation Set



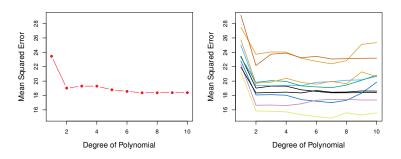
Problems using Validation Set

1. **Highly variable (imprecise) estimates**: Each line shows validation error for one possible division of data



Problems using Validation Set

1. **Highly variable (imprecise) estimates**: Each line shows validation error for one possible division of data



2. **Only subset of data is used** (validation set is excluded – only about half of data is used)

Solution 2: Leave-one-out

- Addresses problems with validation set
- Split the data set into 2 parts:
 - 1. Training: Size n-1
 - 2. Validation: Size 1
- ► Repeat *n* times: to get *n* learning problems

Leave-one-out

► Get *n* learning problems:

- ▶ Train on n-1 instances (blue)
- ► Test on 1 instance (red)

$$MSE_i = (y_i - \hat{y}_i)^2$$

LOOCV estimate

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_i$$

Advantages

- Advantages
 - 1. Using almost all data not just half

- Advantages
 - 1. Using almost all data not just half
 - 2. Stable results: Does not have any randomness

- Advantages
 - 1. Using almost all data not just half
 - 2. Stable results: Does not have any randomness
 - 3. Evaluation is performed with more test data

- Advantages
 - 1. Using almost all data not just half
 - 2. Stable results: Does not have any randomness
 - 3. Evaluation is performed with more test data

Disadvantages

- Advantages
 - 1. Using almost all data not just half
 - 2. Stable results: Does not have any randomness
 - 3. Evaluation is performed with more test data

- Disadvantages
 - ightharpoonup Can be very computationally expensive: Fits the model n times

1. Solve each fit independently and distribute the computation

- 1. Solve each fit independently and distribute the computation
- 2. Linear regression:

1. Solve each fit independently and distribute the computation

2. Linear regression:

Solve only one linear regression using all data

1. Solve each fit independently and distribute the computation

2. Linear regression:

- Solve only one linear regression using all data
- Compute leave-one-out error as:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2$$

1. Solve each fit independently and distribute the computation

2. Linear regression:

- Solve only one linear regression using all data
- Compute leave-one-out error as:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2$$

► True value: y_i , Prediction: \hat{y}_i

1. Solve each fit independently and distribute the computation

2. Linear regression:

- Solve only one linear regression using all data
- Compute leave-one-out error as:

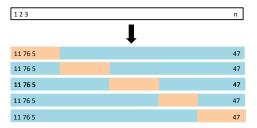
$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2$$

- ▶ True value: y_i , Prediction: \hat{y}_i
- \blacktriangleright h_i is the leverage of data point i:

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{j=1}^n (x_j - \bar{x})^2}$$

Solution 3: k-fold Cross-validation

- Hybrid between validation set and LOO
- ► Split training set into *k* subsets
 - 1. Training set: n n/k
 - 2. Test set: n/k
- ► *k* learning problems

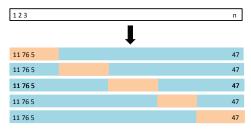


Cross-validation error:

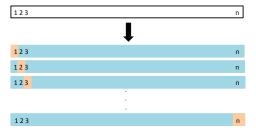
$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

Cross-validation vs Leave-One-Out

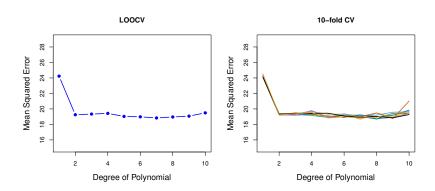
▶ k-fold Cross-validation



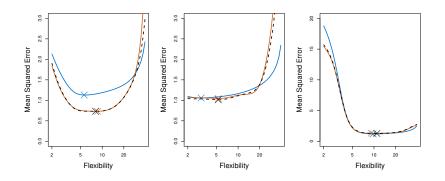
Leave-one-out



Cross-validation vs Leave-One-Out



Empirical Evaluation: 3 Examples



Blue True error

Dashed LOOCV estimate

Orange 10-fold CV

How to Choose *k* in CV?

- ► As *k* increases we have:
 - 1. Increasing computational complexity
 - 2. Decreasing bias (more training data)
 - 3. Increasing variance (bigger overlap between training sets)

Empirically good values: 5 - 10

Cross-validation in Classification

Logistic Regression

- Predict **probability** of a class: p(X)
- ► Example: *p*(balance) probability of default for person with balance
- Linear regression:

$$p(X) = \beta_0 + \beta_1$$

► Logistic regression:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

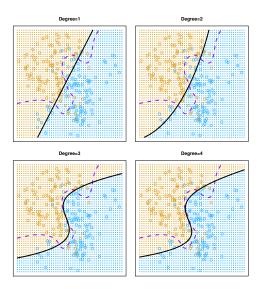
the same as:

$$\log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X$$

Linear decision boundary (derive from log odds: $p(x_1) \ge p(x_2)$)

Features in Logistic Regression

Logistic regression decision boundary is also linear ... non-linear decisions?



Logistic Regression with Nonlinear Features

Linear:

$$\log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X$$

Nonlinear odds:

$$\log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3$$

Nonlinear probability:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3}}{1 + e^{\beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3}}$$

Cross-validation in Classification

- Works the same as for regression
- Do not use MSE but:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} Err_i$$

Error is an indicator function:

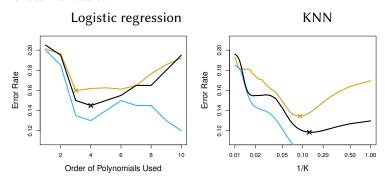
$$\operatorname{Err}_i = I(y_i \neq \hat{y}_i)$$

K in KNN

▶ How to decide on the right k to use in KNN?

K in KNN

- ► How to decide on the right *k* to use in KNN?
- Cross-validation!



Brown Test error
Blue Training error
Black CV error

▶ Is it possible to overfit when using cross-validation?

- ▶ Is it possible to overfit when using cross-validation?
- Yes!

- ▶ Is it possible to overfit when using cross-validation?
- Yes!
- ightharpoonup Inferring k in KNN using cross-validation is learning

- ▶ Is it possible to overfit when using cross-validation?
- Yes!
- Inferring k in KNN using cross-validation is learning
- Insightful theoretical analysis: Probably Approximately Correct (PAC) Learning

- ▶ Is it possible to overfit when using cross-validation?
- Yes!
- Inferring k in KNN using cross-validation is learning
- ► Insightful theoretical analysis: Probably Approximately Correct (PAC) Learning
 - ► Cross-validation will not overfit when learning simple concepts

Overfitting with Cross-validation

- ▶ $\underline{\mathsf{Task}}$: Predict mpg \sim power
- ▶ Define a new feature for some β s:

$$f = \beta_0 + \beta_1 \text{ power} + \beta_2 \text{ power}^2 + \beta_3 \text{ power}^3 + \beta_4 \text{ power}^4 + \dots$$

Linear regression: Find α such that:

$$\mathsf{mpg} = \alpha\,\mathsf{f}$$

Cross-validation: Find values of β s

Overfitting with Cross-validation

- ► <u>Task</u>: Predict mpg ~ power
- ▶ Define a new feature for some β s:

$$f = \beta_0 + \beta_1 \text{ power} + \beta_2 \text{ power}^2 + \beta_3 \text{ power}^3 + \beta_4 \text{ power}^4 + \dots$$

Linear regression: Find α such that:

$$\mathsf{mpg} = \alpha\,\mathsf{f}$$

- **Cross-validation**: Find values of β s
- Will overfit
- Same solution as using linear regression on entire data (no cross-validation)

Preventing Overfitting

► Gold standard: Have a test set that is used only once

Rarely possible

- \$1M Netflix prize design:
 - 1. Publicly available training set
 - 2. Leader-board results using a test set
 - 3. Private data set used to determine the final winner

Bootstrap

- ► **Goal**: Understand the confidence in learned parameters
- Most useful in inference
- ▶ How confident are we in learned values of β :

$$\mathsf{mpg} = \beta_0 + \beta_1 \, \mathsf{power}$$

Bootstrap

- ► **Goal**: Understand the confidence in learned parameters
- Most useful in inference
- ▶ How confident are we in learned values of β :

$$\mathsf{mpg} = \beta_0 + \beta_1 \, \mathsf{power}$$

► **Approach**: Run learning algorithm multiple times with different data sets:

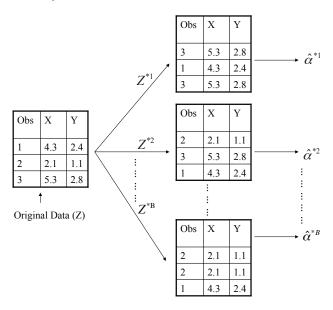
Bootstrap

- ► **Goal**: Understand the confidence in learned parameters
- Most useful in inference
- ▶ How confident are we in learned values of β :

$$\mathsf{mpg} = \beta_0 + \beta_1 \, \mathsf{power}$$

- Approach: Run learning algorithm multiple times with different data sets:
- Create a new data-set by sampling with replacement from the original one

Bootstrap Illustration



Bootstrap Results

