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This Course: Introduction to Machine Learning

I Build a foundation for practice and research in ML
I Basic machine learning concepts: max likelihood, cross

validation
I Fundamental machine learning techniques: regression,

model-selection, deep learning
I Educational goals:

1. How to apply basic methods
2. Reveal what happens inside
3. What are the pitfalls
4. Expand understanding of linear algebra, statistics, and

optimization



What is Machine Learning
I Discover unknown function f :

Y = f(X)

I X = set of features, or inputs
I Y = target, or response
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Statistical View of Machine Learning

I Probability space Ω: Set of all adults
I Random variable: X(ω) = R: Years of education
I Random variable: Y (ω) = R: Salary
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How Good are Predictions?

I Learned function f̂
I Test data: (x1, y1), (x2, y2), . . .

I Mean Squared Error (MSE):

MSE =
1

n

n∑
i=1

(yi − f̂(xi))
2

I This is the estimate of:

MSE = E[(Y − f̂(X))2] =
1

|Ω|
∑
ω∈Ω

(Y (ω)− f̂(X(ω)))2

I Important: Samples xi are i.i.d.



KNN: K-Nearest Neighbors

I Idea: Use similar training points when making predictions
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I Non-parametric method (unlike regression)



Bias-Variance Decomposition

Y = f(X) + ε

Mean Squared Error can be decomposed as:

MSE = E(Y − f̂(X))2 = Var(f̂(X))︸ ︷︷ ︸
Variance

+ (E(f̂(X)))2︸ ︷︷ ︸
Bias

+ Var(ε)

I Bias: How well would method work with infinite data
I Variance: How much does output change with di�erent data

sets



R2 Statistic

R2 = 1− RSS

TSS
= 1−

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

I RSS - residual sum of squares, TSS - total sum of squares
I R2 measures the goodness of the fit as a proportion
I Proportion of data variance explained by the model
I Extreme values:

0: Model does not explain data
1: Model explains data perfectly



Correlation Coe�icient

I Measures dependence between two random variables X and Y

r =
Cov(X,Y )√

Var(X)
√

Var(Y )

I Correlation coe�icient r is between [−1, 1]

0: Variables are not related
1: Variables are perfectly related (same)
−1: Variables are negatively related (di�erent)

I R2 = r2
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�alitative Features: Many Values The Right Way

I Predict salary as a function of state
I Feature statei ∈ {MA,NH,ME}

I Introduce 2 indicator variables xi, zi:

xi =

{
0 if statei = MA

1 if statei 6= MA
zi =

{
0 if statei = NH

1 if statei 6= NH

I Predict salary as:

salary = β0 + β1 × xi + β2 × zi =


β0 + β1 if statei = MA

β0 + β2 if statei = NH

β0 if statei = ME

I Need an indicator variable for ME? Why? hint: linear
independence
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Outlier Data Points

I Data point that is far away from others
I Measurement failure, sensor fails, missing data point
I Can seriously influence prediction quality

−2 −1 0 1 2

−
4

−
2

0
2

4
6

20

−2 0 2 4 6

−
1

0
1

2
3

4

Fitted Values

R
e

s
id

u
a

ls
20

−2 0 2 4 6

0
2

4
6

Fitted Values

S
tu

d
e

n
ti
z
e

d
 R

e
s
id

u
a

ls

20

X

Y



Points with High Leverage

I Points with unusual value of xi
I Single data point can have significant impact on prediction
I R and other packages can compute leverages of data points
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Best Subset Selection

I Want to find a subset of p features
I The subset should be small and predict well
I Example: credit ∼ rating + income + student + limit

M0 ← null model (no features);
for k = 1, 2, . . . , p do

Fit all
(
p
k

)
models that contain k features ;

Mk ← best of
(
p
k

)
models according to a metric (CV error, R2,

etc)
end
return Best ofM0,M1, . . . ,Mp according to metric above

Algorithm 1: Best Subset Selection



Regularization

I Ridge regression (parameter λ), `2 penalty

min
β

RSS(β) + λ
∑
j

β2
j =

min
β

n∑
i=1

yi − β0 −
p∑
j=1

βjxij

2

+ λ
∑
j

β2
j

I Lasso (parameter λ), `1 penalty

min
β

RSS(β) + λ
∑
j

|βj | =

min
β

n∑
i=1

yi − β0 −
p∑
j=1

βjxij

2

+ λ
∑
j

|βj |

I Approximations to the `0 solution



Logistic Regression

I Predict probability of a class: p(X)

I Example: p(balance) probability of default for person with
balance

I Linear regression:

p(X) = β0 + β1

I logistic regression:

p(X) =
eβ0+β1X

1 + eβ0+β1X

I the same as:

log

(
p(X)

1− p(X)

)
= β0 + β1X

I Odds: p(X)/1−p(X)



Logistic Function

y =
ex

1 + ex
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Logit Function

log

(
p(X)

1− p(X)

)
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Estimating Coe�icients: Maximum Likelihood

I Likelihood: Probability that data is generated from a model

`(model) = Pr[data | model]

I Find the most likely model:

max
model

`(model) = max
model

Pr[data | model]

I Likelihood function is di�icult to maximize
I Transform it using log (strictly increasing)

max
model

log `(model)

I Strictly increasing transformation does not change maximum



Discriminative vs Generative Models

I Discriminative models
I Estimate conditional models Pr[Y | X]
I Linear regression
I Logistic regression

I Generative models
I Estimate joint probability Pr[Y,X] = Pr[Y | X] Pr[X]
I Estimates not only probability of labels but also the features
I Once model is fit, can be used to generate data
I LDA, QDA, Naive Bayes



LDA: Linear Discriminant Analysis

I Generative model: capture probability of predictors for each
label
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I Classes are normal: Pr[balance | default = yes]
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QDA:�adratic Discriminant Analysis

I Generalizes LDA

I LDA: Class variances Σk = Σ are the same
I QDA: Class variances Σk can di�er

I LDA or QDA has smaller training error on the same data?
I What about the test error?
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QDA:�adratic Discriminant Analysis
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Naive Bayes

I Simple Bayes net classification

I With normal distribution over features X1, . . . , Xk special case
of QDA with diagonal Σ

I Generalizes to non-Normal distributions and discrete variables
I More on it later . . .



Maximum Margin Hyperplane
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Introducing Slack Variables

I Maximum margin classifier

max
β,M

M

s.t. yi(β
>xi) ≥M

‖β‖2 = 1

I Support Vector Classifier a.k.a Linear SVM

max
β,M,ε≥0

M

s.t. yi(β
>xi) ≥ (M − εi)

‖β‖2 = 1

‖ε‖1 ≤ C

I Slack variables: ε
I Parameter: C

What if C = 0?
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Kernelized SVM

I Dual�adratic Program (usually max-min, not here)

max
α≥0

M∑
l=1

αl −
1

2

M∑
j,k=1

αjαkyjykk(xj , xk)

s.t.
M∑
l=1

αlyl = 0

I Representer theorem: (classification test):

f(z) =

M∑
l=1

αlylk(z, xl) > 0



Kernels

I Polynomial kernel

k(x1, x2) =
(

1 + x>1 x2

)d
I Radial kernel

k(x1, x2) = exp
(
−γ‖x1 − x2‖22

)
I Many many more



Polynomial and Radial Kernels
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Regression Trees

I Predict Baseball Salary based on Years played and Hits

I Example:

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74



CART: Recursive Binary Spli�ing

I Greedy top-to-bo�om approach

I Recursively divide regions to minimize RSS∑
xi∈R1

(yi − ȳ1)2 +
∑
xi∈R2

(yi − ȳ2)2

I Prune tree



Trees vs. KNN

I Trees do not require a distance metric
I Trees work well with categorical predictors
I Trees work well in large dimensions
I KNN are be�er in low-dimensional problems with complex

decision boundaries



Bagging

I Stands for “Bootstrap Aggregating”
I Construct multiple bootstrapped training sets:

T1, T2, . . . , TB

I Fit a tree to each one:

f̂1, f̂2, . . . , f̂B

I Make predictions by averaging individual tree predictions

f̂(x) =
1

B

B∑
b=1

f̂b(x)

I Large values of B are not likely to overfit, B ≈ 100 is a good
choice



Random Forests

I Many trees in bagging will be similar
I Algorithms choose the same features to split on
I Random forests help to address similarity:

I At each split, choose only fromm randomly sampled features

I Good empirical choice ism =
√
p
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Gradient Boosting (Regression)

I Boosting uses all of data, not a random subset (usually)
I Also builds trees f̂1, f̂2, . . .

I and weights λ1, λ2, . . .

I Combined prediction:

f̂(x) =
∑
i

λif̂i(x)

I Assume we have 1 . . .m trees and weights, next best tree?



Gradient Boosting (Regression)

I Just use gradient descent
I Objective is to minimize RSS (1/2):

1

2

n∑
i=1

(yi − f(xi))
2

I Objective with the new treem+ 1:

1

2

n∑
i=1

yi − m∑
j=1

f̂j(xi)− f̂m+1(xi)

2

I Greatest reduction in RSS: gradient

yi −
m∑
j=1

f̂j(xi) ≈ f̂m+1(xi)



ROC Curve
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Area Under ROC Curve

ROC Curve

False positive rate
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Evaluation Method 1: Validation Set

I Just evaluate how well the method works on the test set
I Randomly split data to:

1. Training set: about half of all data
2. Validation set (AKA hold-out set): remaining half

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

%!!""!! #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!& !

I Choose the number of features/representation based on
minimizing error on validation set
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Evaluation Method 2: Leave-one-out

I Addresses problems with validation set
I Split the data set into 2 parts:

1. Training: Size n− 1
2. Validation: Size 1

I Repeat n times: to get n learning problems
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Evaluation Method 3: k-fold Cross-validation
I Hybrid between validation set and LOO
I Split training set into k subsets

1. Training set: n− n/k
2. Test set: n/k

I k learning problems

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!
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I Cross-validation error:

CV(k) =
1

k

k∑
i=1

MSEi



Bootstrap

I Goal: Understand the confidence in learned parameters
I Most useful in inference
I How confident are we in learned values of β:

mpg = β0 + β1 power

I Approach: Run learning algorithm multiple times with
di�erent data sets:

I Create a new data-set by sampling with replacement from
the original one
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Principal Component Analysis
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I 1st Principal Component: Direction with the largest variance

Z1 = 0.839× (pop− pop) + 0.544× (ad− ad)

I Is this linear?

Yes, a�er mean centering.
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K-Means Algorithm
Heuristic solution to the minimization problem

1. Randomly assign cluster numbers to observations
2. Iterate while clusters change

2.1 For each cluster, compute the centroid
2.2 Assign each observation to the closest cluster

Note that:

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)2 = 2
∑

i,i′∈Ck

p∑
j=1

(xij − x̄kj)2



K-Means Illustration

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results



Dendrogram: Similarity Tree
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What Next?

I This course: How to use machine learning. More tools:
I Gaussian processes
I Time series models
I Domain specific models (e.g., natural language processing)

I Doing ML Research
I Musts: Linear algebra, statistics, convex optimization
I Important: Probably Approximately Correct Learning
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