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Example recommender systems

I Movie recommendations (Netflix)
I Personalized music (Pandora)
I Relevant product recommendations (Amazon)
I Online advertising (Facebook)
I Online dating (OK Cupid)
I Special o�ers, coupons, and discounts (Stores)



Google Play recommendations



Amazon recommendations



IBM travel recommendations

I Recommend relevant products on website of a tour operator



Travel recommendation steps

Unknown customer

Browsing history (trips)

Best guess Recommended trips
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Benefits of online recommendations

I What are the benefits?
I For users/customer:

1. Find the right product or information
2. See only relevant advertising
3. Discover diverse products or information sources

I For businesses/websites:
1. Increase user satisfaction
2. Sell more products and right products
3. Discriminate between customers
4. Predict and understand customer preferences
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Types of recommender systems

I By delivery:
I Item-to-item recommendations: e.g. Amazon products
I User-to-item recommendations: e.g. Netflix, Google Play

I By information used:
I Content-based: Use item description and user profile

I Use when rich user profile and content information is available
I Collaborative filtering: Use preferences of other users

I When rich interaction history is available
I Hybrid: Combination
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Content-based or collaborative filtering?

Unknown customer

Browsing history (trips)

Best guess Recommended trips



Content-based recommender systems

I Learn user preference model based on a�ributes
I Use historical user preference data

User Movie
Gender Age Genre Year Rating

Male 16 Comedy 1998 1
Male 98 Horror 1912 5
Female 43 Action 2016 3

I Use supervised learning methods



Collaborative-filtering recommender systems

I Very flexible: no need to know content or user profiles
I Simple and powerful methods
I Training data: Partial user-item preferences
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I Making recommendations: Fill in the blanks (?)



Nearest neighbors: Use similar users

I Infer preferences from similar users
I Other users:
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I Basic algorithm:
1. Find similar user (e.g. 2 ratings same)
2. Infer unknown preferences

I Why does this fail?
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Matrix factorization
I Be�er model for addressing incompatible preferences
I Assumption: Latent (unobserved) customer type, e.g.

1. Adventure seeking
2. Luxury oriented

I Low-rank matrix decomposition:
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I D11 = U1Q
T
1

I Not integral in general!
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Computing matrix factorization

I Given a small constant k
I How to compute the best factorization U,Q?

D
?
= UQT s.t. rank(U) = rank(Q) = k

I Solve optimization problem:

min
U,Q
‖D − UQT‖2F s.t. rank(U) = rank(Q) = k

I Frobenius norm: ‖A‖2F =
∑

i,j A
2
ij =

∑
i σ

2
i

I Solve optimally by SVD when D is complete
I NP-hard when D is incomplete
I Simple, practical, and e�ective method

1. Fix U and solve: minQ ‖D − UQT‖2F s.t. rank(Q) = k
2. Fix Q and solve: minU ‖D − UQT‖2F s.t. rank(U) = k
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Matrix factorization: Results

I One year worth of website click-stream data
I Dependence on number of previously visited sites
I Matrix factorization (green) vs baseline (blue)



Beyond simple models: Dynamic user behavior

I Hidden Markov Model

I Strategic recommendations: optimal in long run
(conversion/satisfaction)



Recommendations on social media (Twi�er)

I Challenges
1. Large volume: (6000 t/s)
2. Short (cryptic) text:

“Cruise with me on this
wild ride”

I Approach:
1. Use language models to

identify travel intent
2. Matrix factorization to

match catalog
descriptions with tweets

I Positive engagement: 15%


