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» Content-based offer recommendations

> Collaborative filtering
» Recommender systems
» Online travel recommendations
» Collaborative filtering
» Matrix factorization and completion



Example recommender systems

» Movie recommendations (Netflix)

v

Personalized music (Pandora)

v

Relevant product recommendations (Amazon)

v

Online advertising (Facebook)
Online dating (OK Cupid)

Special offers, coupons, and discounts (Stores)

v

v



Google Play recommendations
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Amazon recommendations
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IBM travel recommendations

;& The Leisure Sailing Company

Home Compare About Us

Shop

destinations:

Bozburun Yacht Charter Other recommended destinations:
3 Mediterranean  Croatia

tediterranean Zlarin Yacht Charter

Region

+ Historic towns

+ Beautiful islands.

+ Breathtaking natural
wonders

Country: Turkey

+ Secluded white sand bays

Explore Zlarin

Indian-Ocean  Seychelles
Check Availability Mahe Flotilla Sailing
+ Superb white sand beaches

« Surrounded by reefs and
shipwrecks

+ Tropical paradise
+ Relaxed tradewind sailing

B Explore Abaco

Bustling town of Gocek on Turkey's Lycian coast is ideally situated for a bareboat sailing
vacation in one of and tiful the Eastern
Mediterranean. A Gocek yacht charter allows you to explore the mountainous pine-forested
shores, ancient ruins and peaceful anchorages that adorn Turkey's Turquoise Coast at your
own pace.

er
and there are glorious beaches just waiting for you
harbors where you can moor up for the night are invariably home to a good restaurant or Sporades Flotilla Sailing

three. ¥ Stunning natural beauty
+ perfect family choice

+ Club Flotila options
 Rustic Greece at its best

Explore Sporades

 Amazing mountainous backdrop
+ Secluded anchorages
 Beautiful crystal-clear waters

+ Unrivaled historical setting

g Company. Big Data demo by
ibm.com

» Recommend relevant products on website of a tour operator
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1. Find the right product or information
2. See only relevant advertising
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Benefits of online recommendations

» What are the benefits?
» For users/customer:

1.
2.
3.

Find the right product or information
See only relevant advertising
Discover diverse products or information sources

» For businesses/websites:

1.

Increase user satisfaction

2. Sell more products and right products
3.
4. Predict and understand customer preferences

Discriminate between customers
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Types of recommender systems

> By delivery:
> Item-to-item recommendations: e.g. Amazon products
» User-to-item recommendations: e.g. Netflix, Google Play

> By information used:
» Content-based: Use item description and user profile
» Use when rich user profile and content information is available
» Collaborative filtering: Use preferences of other users
» When rich interaction history is available

» Hybrid: Combination



Content-based or collaborative filtering?

Unknown customer

Browsing history (trips)

Best guess




Content-based recommender systems

> Learn user preference model based on attributes

> Use historical user preference data

User Movie
Gender | Age Genre | Year || Rating
Male 16 || Comedy | 1998 1
Male 98 Horror | 1912 5
Female | 43 Action | 2016 3

> Use supervised learning methods




Collaborative-filtering recommender systems

> Very flexible: no need to know content or user profiles
» Simple and powerful methods

» Training data: Partial user-item preferences

item
3771311575
(5] ‘ ‘ ‘ o o«
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75 77177 2 74
4 3 73777777
2352777574
7712534777

» Making recommendations: Fill in the blanks (?)



Nearest neighbors: Use similar users

> Infer preferences from similar users

» Other users:

item
3771311575
a\ 4373777757

» Current user:
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Nearest neighbors: Use similar users

> Infer preferences from similar users
» Other users:
item
] 3771311575
24323)*3*225-)

» Current user:

g . o

v

Basic algorithm:

1. Find similar user (e.g. 2 ratings same)
2.



Nearest neighbors: Use similar users

v

Infer preferences from similar users

Other users:
item

v

user
W
w
w

» Current user:

5 .
2 ?3332215?2)

v

Basic algorithm:

1.
2. Infer unknown preferences



Nearest neighbors: Use similar users

> Infer preferences from similar users
» Other users:
item
] 3771311575
§ 4373777757

» Current user:

& 4333??155?)

v

Basic algorithm:

1.
2. Infer unknown preferences



Nearest neighbors: Use similar users

v

Infer preferences from similar users

» Other users:
item
_ 3771311575
o 6 o o .
a 4 373777 5 7

» Current user:

& 4333??155?)

v

Why does this fail?



Nearest neighbors: Use similar users

> Infer preferences from similar users
> Other users:
item
] 3771311575
54373"?"’5"
> Current user:
2 4333))155))

v

Why does this fail? Conflicting preferences!



Matrix factorization

> Better model for addressing incompatible preferences
» Assumption: Latent (unobserved) customer type, e.g.

1. Adventure seeking
2. Luxury oriented

» Low-rank matrix decomposition:

item type
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Matrix factorization

> Better model for addressing incompatible preferences
» Assumption: Latent (unobserved) customer type, e.g.

1. Adventure seeking
2. Luxury oriented

» Low-rank matrix decomposition:

item type
23311 01 .
item
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» Not integral in general!
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Computing matrix factorization

» Given a small constant k

» How to compute the best factorization U, ?
D= UQT s.t. rank(U) = rank(Q) = k
> Solve optimization problem:

HUHCSI |D—UQT||% s.t. rank(U) = rank(Q) = k

» Frobenius norm: || A||% = Z” A?j =07



Computing matrix factorization

> Solve optimally by SVD when D is complete
» NP-hard when D is incomplete

» Simple, practical, and effective method

1. Fix U and solve: ming || D — UQT||% s.t. rank(Q) = k
2. Fix @ and solve: ming; ||[D — UQT||% s.t. rank(U) = k



Matrix factorization: Results

> One year worth of website click-stream data
» Dependence on number of previously visited sites

> Matrix factorization (green) vs baseline (blue)

Probability of Successful
Recommendation (%)




Beyond simple models: Dynamic user behavior

» Hidden Markov Model

Customer Behavior in Hidden States Hidden Markov Model States
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> Strategic recommendations: optimal in long run
(conversion/satisfaction)



Recommendations on social media (Twitter)

o Twitter /[N Fiight to Phuke...| +

v

Challenges

b
1. Large volume: (6000 t/s)

R e ¥ Follow 2. Short (cryptic) text:
(13 . . .
) — Cruise with me on this
Flight to Phuket for Xmas & NYE booked! . Ly
i wild ride
Now where to stay? 1 1 1 FX % > Ap p roac h .
f Ffeph t,‘ Retweet W Favorite eee hore .I U se |angu age mOde IS tO
10:15 PM-10 Nov 13 . . .
identify travel intent
L T 2. Matrix factorization to
instead of a hotel/bungalow? Follow & mention us if you
need any assistance. via @ I matc h Catalog
Details 4 Reply t1Retweet % Favorite s More
] Sp— _— descriptions with tweets
; @ I Absolutely. Maybe a sailing hol of the
e » Positive engagement: 15%




