Designing Nonlinear Features

Linear regression and beyond

Marek Petrik

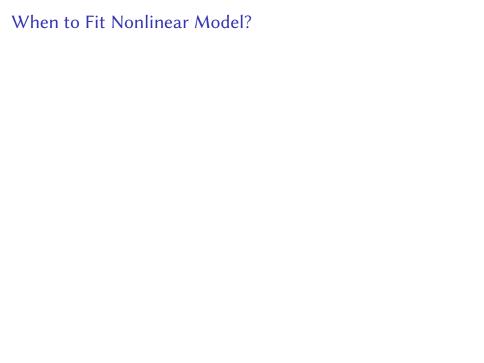
4/11/2017

► Can linear regression fit non-linear functions?

- Can linear regression fit non-linear functions?
- ► Can logistic regression be used to compute non-linear decision boundaries?

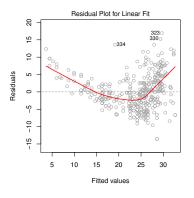
- Can linear regression fit non-linear functions?
- ► Can logistic regression be used to compute non-linear decision boundaries?
- What feature transformations do you know?

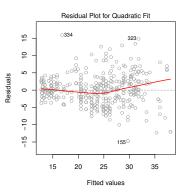
- Can linear regression fit non-linear functions?
- ► Can logistic regression be used to compute non-linear decision boundaries?
- What feature transformations do you know?
- How is it related to kernels?



When to Fit Nonlinear Model?

Residual plot





Approaches to Nonlinear Feature Relationship

- We will cover:
 - 1. Polynomial regression
 - 2. Step functions
 - 3. Regression splines
 - 4. Smoothing splines
 - 5. Local regression
 - 6. Generalized additive models

Approaches to Nonlinear Feature Relationship

Today: Problems with a single variable

- ▶ We will cover:
 - 1. Polynomial regression
 - 2. Step functions
 - 3. Regression splines
 - 4. Smoothing splines
 - 5. Local regression
 - 6. Generalized additive models
- Others significant ones:
 - 1. Fourier Analysis
 - 2. Wavelets

Polynomial Regression

► Standard linear model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Polynomial function:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i + \beta_3 x_i + \dots + \beta_d x_i + \epsilon_i$$

Example Polynomial Regression

Linear regression:

$$\mathsf{mpg} = \beta_0 + \beta_1 \times \mathsf{power}$$

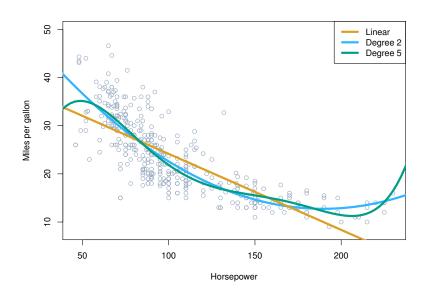
▶ Degree 2 (Quadratic):

$$\mathsf{mpg} = \beta_0 + \beta_1 \times \mathsf{power} + \beta_2 \times \mathsf{power}^2$$

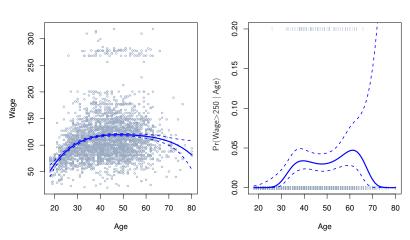
ightharpoonup Degree k:

$$\mathsf{mpg} = \sum_{i=0}^k \beta_k \times \mathsf{power}^k$$

Polynomial Functions



Polynomial Functions (Linear and Logistic)



Why Polynomial Regression is Insufficient?

- Does not account for local non-linearity
- Limited a-priori knowledge
- Very unstable in extreme ranges
- Different problems require different structure

Step Functions

- Similar to dummy variables, but for quantitative features
- Create cut points $c_1.c_2....,c_K$
- ▶ Construct K + 1 new features:

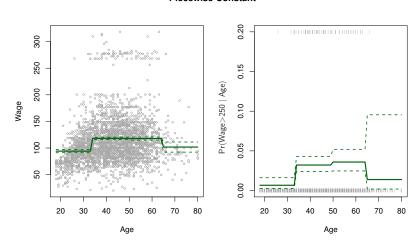
$$C_0(X) = I(X < c_1)$$

 $C_1(X) = I(c_1 \le X < c_2)$
:

• $I(\cdot)$ is an indicator function

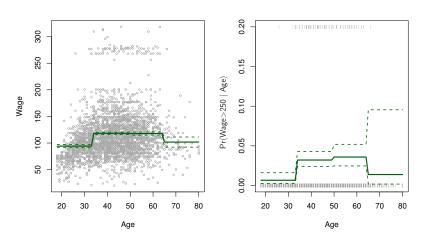
Step Functions Example

Piecewise Constant



Step Functions Example

Piecewise Constant



Step functions are not continuous!

Basis Functions

- Polynomial functions are new basis functions
- Step functions are new basis functions
- ▶ **Basis Functions**: Span linear space
- Linear algebra detour

Basis of Vector Space

- \blacktriangleright Vectors X_1, X_2, \dots, X_K
- ► **Span** of vectors (space):

$$\alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_K X_K$$

Basis: smallest set of vectors that spans a space

Column View of Linear Regression

Linear regression:

$$\min_{\beta} \|y - X\beta\|_2^2$$

Treat vectors as columns:

$$\min_{\beta} \|y - X_1 \beta_1 - \ldots - X_K \beta_K\|_2^2$$

▶ **Interpretation**: closest point to y in space spanned by X_1, \ldots, X_K

Column View of Linear Regression

Linear regression:

$$\min_{\beta} \|y - X\beta\|_2^2$$

Treat vectors as columns:

$$\min_{\beta} \|y - X_1 \beta_1 - \ldots - X_K \beta_K\|_2^2$$

▶ **Interpretation**: closest point to y in space spanned by X_1, \ldots, X_K

Features are the basis!

Regression Splines

- ▶ Polynomials are not local
- ▶ **Step functions** are not continuous or smooth

Regression Splines

- ▶ Polynomials are not local
- ▶ **Step functions** are not continuous or smooth

Regression splines are local and smooth

Regression Splines

- ▶ Polynomials are not local
- ▶ **Step functions** are not continuous or smooth

- Regression splines are local and smooth
- Derivation in several steps

Step 1: Step Function as Piecewise Polynomials

► Step functions (minor change in ≤):

$$C_0(X) = I(X < c_1)$$

 $C_1(X) = I(c_1 < X \le c_2)$
:

► Step-functions are piece-wise polynomials of degree 0

$$C_i(X) = \begin{cases} 1 & \text{if } X > c_i \text{ and } X \le c_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

▶ Different representation (basis spans the same space!):

$$C_i(X) = \begin{cases} 1 & \text{if } X > c_{i-1} \\ 0 & \text{otherwise} \end{cases}$$

Step 2: Piecewise Polynomials

▶ Piecewise polynomials of degree 1:

$$P_i(X) = \begin{cases} X & \text{if } X > c_i \text{ and } X \le c_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

▶ Piecewise polynomials of degree 2:

$$P_i(X) = \begin{cases} X^2 & \text{if } X > c_i \text{ and } X \le c_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

Piecewise polynomials of degree 3:

$$P_i(X) = \begin{cases} X^3 & \text{if } X > c_i \text{ and } X \le c_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

Step 2: Piecewise Polynomials

Piecewise polynomials of degree 1:

$$P_i(X) = \begin{cases} X & \text{if } X > c_i \text{ and } X \le c_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

▶ Piecewise polynomials of degree 2:

$$P_i(X) = \begin{cases} X^2 & \text{if } X > c_i \text{ and } X \le c_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

Piecewise polynomials of degree 3:

$$P_i(X) = \begin{cases} X^3 & \text{if } X > c_i \text{ and } X \le c_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

Local but not continuous!

▶ Piecewise polynomials of degree 1:

$$P_i(X) = \begin{cases} X & \text{if } X > c_i \text{ and } X \le c_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

Piecewise polynomials of degree 1:

$$P_i(X) = \begin{cases} X & \text{if } X > c_i \text{ and } X \le c_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

Must prevent discontinuity in knots

Piecewise polynomials of degree 1:

$$P_i(X) = \begin{cases} X & \text{if } X > c_i \text{ and } X \le c_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

- Must prevent discontinuity in knots
- Different representation:

$$H_i(X) = \begin{cases} X - c_{i-1} & \text{if } X > c_{i-1} \\ 0 & \text{otherwise} \end{cases}$$

Piecewise polynomials of degree 1:

$$P_i(X) = \begin{cases} X & \text{if } X > c_i \text{ and } X \le c_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

- Must prevent discontinuity in knots
- Different representation:

$$H_i(X) = \begin{cases} X - c_{i-1} & \text{if } X > c_{i-1} \\ 0 & \text{otherwise} \end{cases}$$

Each feature is 0 in its knot

General Regression Splines

► Regression splines of degree *d*:

$$H_i(X) = \begin{cases} (X - c_{i-1})^d & \text{if } X > c_{i-1} \\ 0 & \text{otherwise} \end{cases}$$

General Regression Splines

► Regression splines of degree *d*:

$$H_i(X) = \begin{cases} (X - c_{i-1})^d & \text{if } X > c_{i-1} \\ 0 & \text{otherwise} \end{cases}$$

Compact representation:

$$h(x,\xi) = ([x-\xi]_+)^d = (\max\{x-\xi,0\})^d$$

General Regression Splines

Regression splines of degree d:

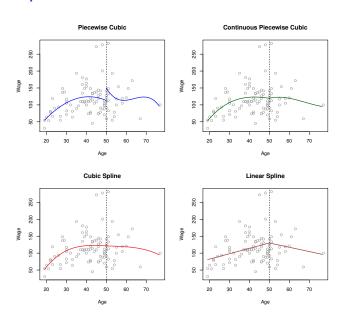
$$H_i(X) = \begin{cases} (X - c_{i-1})^d & \text{if } X > c_{i-1} \\ 0 & \text{otherwise} \end{cases}$$

Compact representation:

$$h(x,\xi) = ([x-\xi]_+)^d = (\max\{x-\xi,0\})^d$$

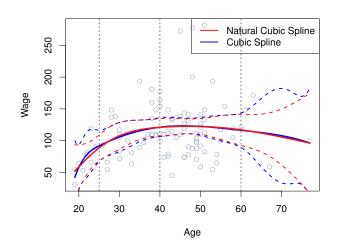
Most common are cubic splines: continuous and continuously differentiable

Example Splines



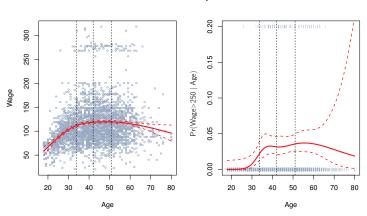
Natural Splines

Boundary segments are linear

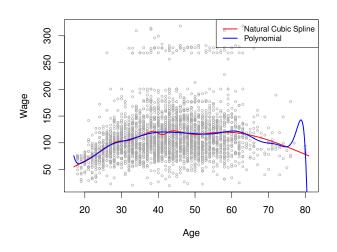


Natural Splines and Logistic Regression

Natural Cubic Spline



Natural Splines vs Polynomials



Choosing Knots

- Domain dependent
- Change of mode (retirement?)
- Quantiles of data is generally a good choice
- ► Number of knots = degrees of freedom

Smoothing Splines

- Extreme version of regression splines
- Knot in every data point

Smoothing Splines

- Extreme version of regression splines
- Knot in every data point
- Must have regularization to generalize

$$\sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

- Smoothing parameter λ chosen by LOOCV
- ► Effective degrees of freedom: technical, but not very important

Finishing the Book

Read also 7.6 and 7.7:

- Local regression
- General Additive Models