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Linear Regression

v

Can linear regression fit non-linear functions?

v

Can logistic regression be used to compute non-linear decision
boundaries?

v

What feature transformations do you know?

How is it related to kernels?

v



When to Fit Nonlinear Model?



When to Fit Nonlinear Model?

» Residual plot

Residual Plot for Linear Fit
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Approaches to Nonlinear Feature Relationship

» We will cover:

1. Polynomial regression

Step functions

Regression splines
Smoothing splines

Local regression
Generalized additive models
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Approaches to Nonlinear Feature Relationship

Today: Problems with a single variable
> We will cover:

1. Polynomial regression

Step functions

Regression splines
Smoothing splines

Local regression

6. Generalized additive models

g WD

> Others significant ones:

1. Fourier Analysis
2. Wavelets



Polynomial Regression

» Standard linear model:
yi = Bo + Brx; + €
> Polynomial function:

Yi = Bo + Brx; + Boxi + B3xi + ... Bawi + €



Example Polynomial Regression

> Linear regression:
mpg = Bo + 1 X power
» Degree 2 (Quadratic):
mpg = Bo + B1 X power + By X power?
> Degree k:

k
mpg = Zﬂk x power®
1=0



Polynomial Functions
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=== Degree 2
=== Degree 5
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Polynomial Functions (Linear and Logistic)
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100 150 200 250 300

50

Degree-4 Polynomial

30

40

50

Age

60

70

80

Pr(Wage>250 | Age)

=}
N
o

0.05 0.10 0.15

0.00




Why Polynomial Regression is Insufficient?

v

Does not account for local non-linearity

v

Limited a-priori knowledge

v

Very unstable in extreme ranges

v

Different problems require different structure



Step Functions

v

Similar to dummy variables, but for quantitative features

> Create cut points cj.ca...., ck

v

Construct K + 1 new features:

Co(X)
C1(X)

(X < Cl)

=1
21(61§X<62)

» I(-) is an indicator function



Step Functions Example

Piecewise Constant
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Step Functions Example

Piecewise Constant
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Step functions are not continuous!




Basis Functions

v

Polynomial functions are new basis functions

v

Step functions are new basis functions

v

Basis Functions: Span linear space

v

Linear algebra detour



Basis of Vector Space

» Vectors X1, Xo,..., Xk

» Span of vectors (space):
aX; +oXo+ ... +agXk

> Basis: smallest set of vectors that spans a space



Column View of Linear Regression

> Linear regression:
min [y — X3

» Treat vectors as columns:

mﬁinHy — X161 — ... — XgBkll3

> Interpretation: closest point to ¢ in space spanned by

Xi1,..., Xx



Column View of Linear Regression

> Linear regression:

min [ly — X 5|3

Y 2
B
» Treat vectors as columns:
mﬂin ly — X181 — ... — Xk Bkl
> Interpretation: closest point to ¢ in space spanned by
Xi,..., XKk

> Features are the basis!



Regression Splines

> Polynomials are not local

> Step functions are not continuous or smooth



Regression Splines

> Polynomials are not local

> Step functions are not continuous or smooth

> Regression splines are local and smooth



Regression Splines

v

Polynomials are not local

v

Step functions are not continuous or smooth

> Regression splines are local and smooth

v

Derivation in several steps



Step 1: Step Function as Piecewise Polynomials

» Step functions (minor change in <):

Co(X) = I(X < Cl)
Cl(X) = I(Cl <X < CQ)

» Step-functions are piece-wise polynomials of degree 0

0 otherwise

X) = {1 if X >c¢;and X < c¢qq

» Different representation (basis spans the same space!):

1 ifX >c¢q

0 otherwise

Ci(X)_{



Step 2: Piecewise Polynomials
> Piecewise polynomials of degree 1:

Bi(X) = {X if X > c¢;and X < ciyy

0  otherwise
> Piecewise polynomials of degree 2:

X% ifX >cand X < ¢

0 otherwise

> Piecewise polynomials of degree 3:

Pi(X) =

X3 ifX >c¢and X < Cit1
0 otherwise



Step 2: Piecewise Polynomials
> Piecewise polynomials of degree 1:

X ifX >c¢and X < Cit1

0 otherwise

v

Piecewise polynomials of degree 2:

X% ifX >cand X < ¢

0 otherwise

v

Piecewise polynomials of degree 3:

Pi(X) =

X3 ifX >c¢and X < Cit1
0 otherwise

Local but not continuous!

v



Step 3: Continuity and Regression Splines

> Piecewise polynomials of degree 1:

Pi(X) =

X ifX >c¢and X < ¢4
0 otherwise



Step 3: Continuity and Regression Splines
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0 otherwise

> Must prevent discontinuity in knots



Step 3: Continuity and Regression Splines

> Piecewise polynomials of degree 1:

X ifX ;and X < ¢
B(X) _ I > .cl an < Ci+1
0 otherwise
> Must prevent discontinuity in knots

» Different representation:

X — Ci—1 if X > Ci—1

0 otherwise
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Step 3: Continuity and Regression Splines

> Piecewise polynomials of degree 1:

Pi(X) =

X ifX >c¢and X < ¢4
0 otherwise

> Must prevent discontinuity in knots

» Different representation:

X — Ci—1 if X > Ci—1

0 otherwise

H;(X) :{

» Each feature is 0 in its knot



General Regression Splines

> Regression splines of degree d:

(X — Ci_l)d if X >c¢q

0 otherwise

H;(X) :{



General Regression Splines

> Regression splines of degree d:

(X — Ci_l)d if X >c¢q

0 otherwise

H;(X) :{

» Compact representation:

h(z,€) = ([o — €)+)? = (max{z — & 0})



General Regression Splines

> Regression splines of degree d:

(X — Ci_l)d if X >c¢q

0 otherwise

H;(X) :{

» Compact representation:

h(z,€) = ([o — €)+)? = (max{z — & 0})

» Most common are cubic splines: continuous and continuously
differentiable



Example Splines

Piecewise Cubic Continuous Piecewise Cubic
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Natural Splines

Boundary segments are linear

—— Natural Cubic Spline
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Natural Splines and Logistic Regression

Natural Cubic Spline
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Natural Splines vs Polynomials

Wage
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Choosing Knots

v

Domain dependent

v

Change of mode (retirement?)

v

Quantiles of data is generally a good choice

v

Number of knots = degrees of freedom



Smoothing Splines

» Extreme version of regression splines

> Knot in every data point



Smoothing Splines

v

Extreme version of regression splines

v

Knot in every data point

v

Must have regularization to generalize

n

> (i —g(@)* + A / g"(t)%dt

i=1

v

Smoothing parameter A chosen by LOOCV

v

Effective degrees of freedom: technical, but not very important



Finishing the Book

Read also 7.6 and 7.7:
> Local regression
» General Additive Models



