Support Vector Machines

Maximum Margin Classifiers

Marek Petrik

3/30/2017

Classifiers

▶ Which classifiers do you know? (5+)

Classifiers

▶ Which classifiers do you know? (5+)

▶ Which ones are generative/discriminative?

Classifiers

▶ Which classifiers do you know? (5+)

▶ Which ones are generative/discriminative?

Do we need any more? Why?

Separating Hyperplane

Hyperplane: $\beta_0 + x^{\top} \beta = 0$

Separating Hyperplane

Blue: $\beta_0 + x^{\top} \beta > 0$

Separating Hyperplane

 $\text{Red: } \beta_0 + x^\top \beta < 0$

Question

▶ Which other classification methods classify using a separating hyperplane?

Best Separating Hyperplane

- Data is separable
- ▶ Why would either one be better than others?

How is it computed?

► Logistic regression:

How is it computed?

► Logistic regression: Maximum likelihood

How is it computed?

▶ Logistic regression: Maximum likelihood

► LDA:

How is it computed?

► Logistic regression: Maximum likelihood

► LDA: Maximum likelihood

How is it computed?

▶ Logistic regression: Maximum likelihood

▶ LDA: Maximum likelihood

Support vector machines: Maximum margin

Maximum Margin Hyperplane

Computing Maximum Margin Hyperplane

- ▶ Class labels: $y_i \in \{-1, +1\}$ (not $\{0, 1\}$)
- ► Solve a **quadratic program** (assume one of the features is a constant to get the equivalent of an intercept)

$$\begin{aligned} \max_{\beta,M} & & M \\ \text{s.t.} & & y_i(\beta^\top x) \geq M \\ & & \|\beta\|_2 = 1 \end{aligned}$$

Non-separable Case

Rarely lucky enough to get separable classes

Almost Unseparable Cases

 Maximum margin can be brittle even when classes are separable

Introducing Slack Variables

Maximum margin classifier

$$\max_{\beta,M} \qquad M$$
s.t.
$$y_i(\beta^\top x) \ge M$$

$$\|\beta\|_2 = 1$$

Support Vector Classifier a.k.a Linear SVM

$$\max_{\beta,M,\epsilon \geq 0} \quad M$$
s.t.
$$y_i(\beta^\top x) \geq (M - \epsilon_i)$$

$$\|\beta\|_2 = 1$$

$$\|\epsilon\|_1 \leq C$$

- ▶ Slack variables: ϵ
- ▶ Parameter: *C*

Introducing Slack Variables

Maximum margin classifier

$$\max_{\beta,M} \qquad M$$
s.t.
$$y_i(\beta^\top x) \ge M$$

$$\|\beta\|_2 = 1$$

Support Vector Classifier a.k.a Linear SVM

$$\max_{\beta,M,\epsilon \geq 0} \quad M$$
s.t.
$$y_i(\beta^\top x) \geq (M - \epsilon_i)$$

$$\|\beta\|_2 = 1$$

$$\|\epsilon\|_1 \leq C$$

- ▶ Slack variables: ϵ
- ▶ Parameter: C What if C = 0?

Effect of Decreasing Parameter ${\cal C}$

What About Nonlinearity?

Dealing with Nonlinearity

- Introduce more features, just like with logistic regression
- It is possible to do better with SVMs
- Primal Quadratic Program

$$\max_{\substack{\beta,M\\ \text{s.t.}}} M$$

$$y_i(\beta^\top x) \ge M$$

$$\|\beta\|_2 = 1$$

Equivalent <u>Dual</u> Quadratic Program (usually max-min, not here)

$$\max_{\alpha \geq 0} \quad \sum_{l=1}^{M} \alpha_l - \frac{1}{2} \sum_{j,k=1}^{M} \alpha_j \alpha_k y_j y_k \langle x_j, x_k \rangle$$
s.t.
$$\sum_{l=1}^{M} \alpha_l y_l = 0$$

SVM Dual Representation

▶ **<u>Dual</u> Quadratic Program** (usually max-min, not here)

$$\max_{\alpha \geq 0} \quad \sum_{l=1}^{M} \alpha_l - \frac{1}{2} \sum_{j,k=1}^{M} \alpha_j \alpha_k y_j y_k \langle x_j, x_k \rangle$$
s.t.
$$\sum_{l=1}^{M} \alpha_l y_l = 0$$

Representer theorem: (classification test):

$$f(z) = \sum_{l=1}^{M} \alpha_l y_l \langle z, x_l \rangle > 0$$

SVM Dual Representation

▶ **<u>Dual</u> Quadratic Program** (usually max-min, not here)

$$\max_{\alpha \ge 0} \sum_{l=1}^{M} \alpha_l - \frac{1}{2} \sum_{j,k=1}^{M} \alpha_j \alpha_k y_j y_k \langle \boldsymbol{x_j}, \boldsymbol{x_k} \rangle$$
s.t.
$$\sum_{l=1}^{M} \alpha_l y_l = 0$$

Representer theorem: (classification test):

$$f(z) = \sum_{l=1}^{M} \alpha_l y_l \langle z, x_l \rangle > 0$$

Only need the inner product between data points

SVM Dual Representation

▶ <u>Dual</u> Quadratic Program (usually max-min, not here)

$$\max_{\alpha \geq 0} \quad \sum_{l=1}^{M} \alpha_l - \frac{1}{2} \sum_{j,k=1}^{M} \alpha_j \alpha_k y_j y_k \langle x_j, x_k \rangle$$
s.t.
$$\sum_{l=1}^{M} \alpha_l y_l = 0$$

Representer theorem: (classification test):

$$f(z) = \sum_{l=1}^{M} \alpha_l y_l \langle z, x_l \rangle > 0$$

- Only need the inner product between data points
- Define a kernel function by projecting data to higher dimensions:

$$k(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle$$

Kernelized SVM

<u>Dual</u> Quadratic Program (usually max-min, not here)

$$\max_{\alpha \ge 0} \sum_{l=1}^{M} \alpha_l - \frac{1}{2} \sum_{j,k=1}^{M} \alpha_j \alpha_k y_j y_k k(x_j, x_k)$$
s.t.
$$\sum_{l=1}^{M} \alpha_l y_l = 0$$

Representer theorem: (classification test):

$$f(z) = \sum_{l=1}^{M} \alpha_l y_l \frac{k(z, x_l)}{} > 0$$

Kernels

► Polynomial kernel

$$k(x_1, x_2) = \left(1 + x_1^{\top} x_2\right)$$

Radial kernel

$$k(x_1, x_2) = \exp(-\gamma ||x_1 - x_2||_2^2)$$

Many many more

Polynomial and Radial Kernels

SVM vs LDA: Train

SVM vs LDA: Test

Multiple Classes

▶ One-vs-one

One-vs-all

SVM vs Logistic Regression

- ► Logistic regression: Minimize negative log likelihood
- **SVM**: Minimize hinge loss

Bottom line: use SVM when classes are better separated or there a good *kernel*