Fast Bellman Updates for Robust MDPs

Chin Pang Ho 1 * Marek Petrik 2 * Wolfram Wiesemann 1 *

Abstract
We describe two efficient, and exact, algorithms for computing Bellman updates in robust Markov decision processes (MDPs). The first algorithm uses a homotopy continuation method to compute updates for L_1-constrained s, a-rectangular ambiguity sets. It runs in quasi-linear time for plain L_1 norms and also generalizes to weighted L_1 norms. The second algorithm uses bisection to compute updates for robust MDPs with s-rectangular ambiguity sets. This algorithm, when combined with the homotopy method, also has a quasi-linear runtime. Unlike previous methods, our algorithms compute the primal solution in addition to the optimal objective value, which makes them useful in policy iteration methods. Our experimental results indicate that the proposed methods are over 1,000 times faster than Gurobi, a state-of-the-art commercial optimization package, for small instances, and the performance gap grows considerably with problem size.

1. Introduction
Markov decision processes (MDPs) provide a versatile methodology for modeling dynamic decision problems under uncertainty (Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998; Puterman, 2005). By assuming that transition probabilities and rewards are known precisely, however, MDPs are sensitive to model and sample errors. In recent years, the reinforcement learning literature has studied robust MDPs (RMDPs), which assume that the transition probabilities and/or rewards are uncertain and can take on any plausible value from a so-called uncertainty set to mitigate the errors (Xu & Mannor, 2006; 2009; Mannor et al., 2012; Petrik, 2012; Hanasusanto & Kuhn, 2013; Tamar et al., 2014; Delgado et al., 2016; Petrik et al., 2016). RMDPs are reminiscent of dynamic zero-sum games: the decision maker chooses the best actions, while an adversarial nature chooses the worst plausible transition probabilities.

The majority of the RMDP literature assumes that the ambiguity set is rectangular, in which case the analysis and computation become particularly convenient (Iyengar, 2005; Nilim & El Ghaoui, 2005; Le Tallec, 2007; Kaufman & Schaefer, 2013; Wiesemann et al., 2013). RMDPs with rectangular ambiguity sets are optimized by stationary (that is, history-independent) policies, and they satisfy a robust Bellman optimality equation which allows the optimal policy to be computed using value or policy iteration in polynomial time (Hansen et al., 2013). Polynomial time complexity is, however, often insufficient. In all but the smallest RMDPs, computing the worst-case realization of the transition probabilities involves solving at least a linear program (LP). The runtime of LP solvers can grow cubically with the number of states. Although modern LP solvers are very efficient, solving an LP to compute the Bellman update for each state and iteration becomes prohibitively expensive even for problems with only a few hundred states.

In this paper, we develop new algorithms that mitigate the computational concerns for RMDPs with ambiguity sets constrained by plain and weighted L_1 norms. Such ambiguity sets are common in reinforcement learning and operations research for two main reasons (Iyengar, 2005; Strehl et al., 2009; Jaksch et al., 2010; Petrik & Subramanian, 2014; Taleghan et al., 2015; Petrik et al., 2016). First, it is easy to construct them from samples using Hoeffding-style bounds (Weißenstein et al., 2003). Second, they are convenient to work with computationally, since the worst transition probabilities can be computed using LPs.

Our main contributions are two efficient, and exact, algorithms for computing Bellman updates in RMDPs. The first algorithm uses a homotopy continuation approach (Vanderbei, 2001) for RMDPs with so-called s, a-rectangular ambiguity sets that are constrained by weighted L_1 norms. s, a-rectangular ambiguity sets assume that nature can observe the decision-maker’s actions before choosing the worst plausible realization of the transition probabilities (Le Tallec, 2007; Wiesemann et al., 2013). Using these sets resem-
bles the adaptive offline adversary model. The homotopy method starts with a singleton ambiguity set, for which computing the worst response is trivial, and then it traces nature’s response with the increasing ambiguity set size. Its computational complexity is $O(SA \log S)$, where S is the number of states and A is the number of actions.

Our second algorithm uses a novel bisection approach to solve RMDPs with s-rectangular ambiguity sets. These ambiguity sets assume a weaker nature that must commit to a realization of the transition probabilities before observing the decision-maker’s actions (Le Tallec, 2007; Wiesemann et al., 2013). Using s-rectangular ambiguity sets resembles the oblivious adversary model and provides less conservative solutions. They are, however, much more computationally challenging since the decision maker’s optimal policy can be randomized (Wiesemann et al., 2013). When the bisection method is combined with our homotopy method for L_1-constrained ambiguity sets, its time complexity is $O(SA \log(SA))$. We emphasize that the complexity is independent of any approximation constant ϵ which is unusual for bisection methods.

Problem-specific optimization methods are often needed to solve machine learning problems, which are large but exhibit simple structure. Quasi-linear-time algorithms for computing Bellman updates for RMDPs are available with (modified) robust policy iteration (Kaufman & Schaefer, 2013). However, computing Bellman updates for RMDPs many times faster than value iteration (Kaufman & Wiesemann et al., 2013) is challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy is complicated by the need to respect constraints on transitions probabilities. They are, however, much more computatio

2. Robust Bellman Updates

We consider a Robust Markov Decision Process (RMDP) with a finite number of states $\mathcal{S} = \{1, \ldots, S\}$ and actions $\mathcal{A} = \{1, \ldots, A\}$. Every action can be taken in every state. Choosing an action $a \in \mathcal{A}$ in a state $s \in \mathcal{S}$ yields a reward $r_{s,a} \in \mathbb{R}$ and results in a stochastic transition to a new state s' according to the transition probabilities $p_{s,a} \in \Delta^S$. The probability p is, however, unknown and is constrained to be in the ambiguity set \mathcal{P} (which is also sometimes referred to as an uncertainty set).

A common objective in RMDPs is to compute a stationary randomized policy $\pi : \mathcal{S} \rightarrow \Delta^A$ that maximizes the return ρ for the worst plausible realization of transition probabilities:

$$\max_{\pi \in \Pi_R} \min_{p \in \mathcal{P}} \rho(\pi, p),$$

where Π_R is the set of all stationary randomized policies and $\rho(\pi, p)$ is the return. When assuming an infinite-horizon γ-discounted objective, the return is $\rho(\pi, p) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t \cdot r_{S_t, A_t}]$ where $S_0 = s_0$ is the initial state, the state random variables S_0, \ldots are distributed according to p, and actions A_0, \ldots are distributed according to π. But our results also apply directly to finite-horizon problems.

The problem (1) is NP-hard in general but solvable in polynomial time when \mathcal{P} is s, a-rectangular (Nilim & El Ghaoui, 2005; Iyengar, 2005). In s, a-rectangular RMDPs, ambiguity sets are defined independently for each state s and action a: $p_{s,a} \in \mathcal{P}_{s,a}$ rather than $p \in \mathcal{P}$.

We focus particularly on ambiguity sets defined with respect to a norm-bounded distance from a known nominal transition probability \bar{p}. Formally, the s, a-rectangular ambiguity set for $s \in \mathcal{S}$ and $a \in \mathcal{A}$ is $\mathcal{P}_{s,a} = \{p \in \Delta^S : \|p_{s,a} - \bar{p}_{s,a}\| \leq \kappa_{s,a}\}$ for a given $\kappa_{s,a} \geq 0$ and a norm $\|\cdot\|$. Recall that the Q-function in regular MDPs is defined as $q_{s,a} = r_{s,a} + \gamma \cdot \bar{p}_{s,a}^T v$ for some value function $v \in \mathbb{R}^S$. The Q-function $q \in \mathbb{R}^{S \times A}$ for s, a-rectangular RMDPs is
Fast Bellman Updates for Robust MDPs

Figure 1. Example function $q_{s,a}(\xi)$ for an ambiguity set constrained by the L_1 norm.

defined as:

$$q_{s,a}(\xi) = \min_{p \in \Delta^S} \left\{ r_{s,a} + \gamma \cdot p^T v : \|p - \bar{p}_{s,a}\| \leq \xi \right\}. \quad (2)$$

Figure 1 depicts an example of the value of a q as a function of ξ. Finally, the optimal value function $v^* \in \mathbb{R}^S$ in this RMDP model must satisfy the robust Bellman optimality equation (Iyengar, 2005):

$$v^*_s = \max_{a \in A^s} \min_{\xi \leq \kappa_{s,a}} q^*_s(\xi), \quad (3)$$

where q^* is defined in terms of v^*. We use ξ as an optimization parameter in the robust q function, and we use $\kappa_{s,a}$ as robustness budgets of the RMDP.

In s-rectangular RMDPs, the ambiguity set is defined independently for each state s: $p_{s,a} \in \mathcal{P}_s$. The norm constrained s-rectangular ambiguity set becomes: $\mathcal{P}_s = \{ (p_1 \in \Delta^S, \ldots, p_A \in \Delta^S) : \sum_{a \in A^s} \|p_{s,a} - p_a\| \leq \kappa_{s,a} \}$ for a given $\kappa_{s,a} \geq 0$. The optimal value function $v^* \in \mathbb{R}^S$ must satisfy the following robust Bellman optimality equation (Wiesemann et al., 2013):

$$v^*_s = \max_{d \in \Delta^A, \xi \in \mathbb{R}^A} \left\{ \sum_{a \in A^s} d_a \cdot q^*_s(\xi) : \sum_{a \in A^s} \xi_a \leq \kappa_s \right\}. \quad (4)$$

Here, d_a represents the probability of taking an action a in this state: $\pi(s,a) = d_a$ for the state s above. Optimal policies in s-rectangular RMDPs may be randomized.

3. Homotopy for s, a-rectangular Sets

In this section, we consider the problem of efficiently computing the worst-case response of nature in RMDPs with s, a-rectangular ambiguity sets. This amounts to computing the function $q_{s,a}(\xi)$ in (2) for some state s and action a. Our homotopy method assumes that the ambiguity set emerges from the intersection of the probability simplex and a w-weighted L_1 norm ball, where the norm is defined as $\|x\|_{1,w} = \sum_{i=1}^n w_i |x_i|$. The weights $w > 0$ must be positive but need not sum to 1 or any other specific number.

Since our focus in this section is restricted to computing the function $q_{s,a}(\xi)$ for a fixed state s and action a, we drop the subscripts and refer to the function as $q(\xi)$, the nominal probabilities as $\bar{p} \in \Delta^S$, and the degree of ambiguity as $\kappa \in \mathbb{R}_+$. To further simplify notation, we define $z = r_{s,a} + \gamma v$ to obtain:

$$q(\xi) = \min_{p \in \Delta^S} \left\{ p^T z : \|p - \bar{p}\|_{1,w} \leq \xi \right\}. \quad (5)$$

Problem (5) can be readily formulated as a linear program:

$$q(\xi) = \min_{p \in \mathbb{R}^S, l \in \mathbb{R}^S} z^T p$$

subject to $p - \bar{p} \leq l$ \hspace{1cm} (5) \hspace{1cm} (6)

$p - \bar{p} \leq l$ \hspace{1cm} (6)

$p \geq 0$ \hspace{1cm} (6)

$1^T p = 1, \hspace{0.5cm} w^T l = \xi$

We assume in (6) that the constraint $w^T l \leq \xi$ is binding, which will be the case for all ξ of interest to our homotopy method. Note that when the constraint $w^T l \leq \xi$ is not binding, $q(\xi)$ will not change for any greater value of ξ.

Algorithm 1: Homotopy method for $q(\xi)$.

Input: LP parameters: z, w, \bar{p}

Initialize $\xi \leftarrow 0.0, p \leftarrow \bar{p}, X_1 = 0$ and $Q_1 = q(0) = \bar{p}^T z, k \leftarrow 2$;

// Derivatives for basic solutions

for $i = 1 \ldots S$ do

for receiver $j = 1 \ldots S$ do

 Case $C1 (i \in \mathcal{Z}^a)$: $\alpha_{i,j} \leftarrow z_j - z_i/w_i + w_j$;

 Case $C2 (i \in \mathcal{Z})$: $\beta_{i,j} \leftarrow z_j - z_i/w_i - w_j$;

end

end

Sort $(\alpha_{i,j}$ and $\beta_{i,j})$ in ascending order of their derivatives to get the bases B_1, \ldots, B_T;

for $l = 1 \ldots T$ do

if B_l is feasible then

Compute maximum possible increase $\Delta \xi$ in ξ for B_l to remain feasible;

if $\Delta \xi > 0$ then

Update $\xi \leftarrow \xi + \Delta \xi$, update objective value using derivative;

Record breakpoint:

$k \leftarrow k + 1, X_k \leftarrow \xi, Q_k \leftarrow q(\xi)$;

end

end

The remainder of the function $q(\xi)$ will be constant:

$X_{k+1} \leftarrow \infty, Q_{k+1} \leftarrow Q_k, k \leftarrow k + 1$;

return $B_{1 \ldots k}$ and values $Q_{1 \ldots k}$.

The basic idea of homotopy methods is to trace the optimal solution to an optimization problem while increasing the
value of some parameter (Garrigues & El Ghaoui, 2009; Asif & Romberg, 2009). One starts with a parameter value for which the problem is easy to solve. In our case, we choose ξ = 0 since the only feasible response of nature is p = ¯p, and solving q(0) amounts to computing a Bellman update in a non-robust MDP. We then track the optimal p as the value of ξ increases. Implementing a homotopy method in the context of a linear program such as (6) is especially convenient since q(ξ) and p are piecewise linear in ξ (Vanderbei, 2001). Intuitively, p is linear in ξ for each basic feasible solution in (6), and a breakpoint (or a ‘knot’) occurs whenever the currently optimal basis becomes infeasible. A similar argument shows that q(ξ) is piecewise linear, too.

Before proving the correctness of our homotopy method, we describe the algorithm informally. The bases of interest, which correspond to a subset of the extreme points of the feasible set in (6), have a particularly simple structure. For each such basis, the value of exactly two components of p change as ξ increases. For p to be a valid probability distribution, it must sum to 1, and therefore one component increases and the other component decreases. We use the term donor for the component that decreases and donates some of its mass to the receiver component.

Given an optimal basis with a donor-receiver pair, we trace the optimal solution p as ξ increases. Once the basis becomes infeasible, we switch to a feasible basis whose objective value decreases fastest when increasing ξ. For example, consider a problem with uniform weights w = 1 and an increase of ξ by Δξ. If i is the donor and j the receiver, then Δp_i = −Δξ/2 and Δp_j = Δξ/2, and the objective value changes by (z_j − z_i)Δξ/2. The examples below illustrate the paths traced by the optimal solution p.

Example 1. Consider the function q(ξ) in (5) for an RMDP with 4 states, z = [4, 3, 2, 1], ¯p = [0.2, 0.3, 0.4, 0.1], and uniform weights w = 1. Figure 2(left) depicts the evolution of the optimal p as a function of ξ. The only receiver in all bases is component 3, and the donors are the components 0, 1, and 2 (in order of increasing ξ). Section 3.1 shows that for uniform w, the component with the smallest value of z is always the sole receiver.

Example 2. Consider the function q(ξ) in (5) for an RMDP with 4 states, z = [2.9, 0.9, 1.5, 0.0], ¯p = [0.2, 0.3, 0.3, 0.2], and non-uniform weights w = [1, 1, 2, 2]. Figure 2(right) depicts the evolution of the optimal p as a function of ξ. The donor-receiver pairs are (0, 1), (1, 3), and (2, 3). This example shows that when w is not uniform, several components can serve as receivers, and some components can be both receivers and donors for different values of ξ.

The homotopy algorithm is described in Algorithm 1. We first prove the structure of the bases described above and then compute the derivatives of the optimal objective value. The section concludes by proving the optimality of the homotopy solution as well as analyzing its computational complexity.

In the following, we use the sets ℰ, ℳ, ℳ' ⊆ {1, . . . , S} to denote which inequalities in (6) are active in a particular basis. For example, i ∈ ℰ indicates that p_i − ¯p_i = l_i, and j ∈ ℳ indicates that p_j = 0. The letter ℰ (ℳ') stands for upper (lower) bounds on p, and ℳ for zero. Note that some constraints may be inactive in the basis and still hold with equality or even be violated.

Our homotopy approach is based on tracing the basic feasible solutions. Since (6) has 2S variables (p and l), each set of 2S constraints (inequalities and/or equalities) in (6) that are satisfied as equalities and that are linearly independent define a basis, see, e.g., Definition 2.9 in Bertsimas & Tsitsiklis (1997). In particular, each basis is uniquely defined by the elements in the sets ℰ, ℳ, and ℳ'. We let ℰ' = ℰ \ (ℳ' ∪ ℳ) denote the components i for which both the lower and the upper bounds hold with equality, that is, for which p_i = ¯p_i. Moreover, we let ℳ' = ℳ \ (ℰ ∪ ℳ') denote the components i for which the upper bounds (but not the lower bounds) hold with equality and for which p_i > 0, that is, for which p_i > ¯p_i. Likewise, we let ℳ' = ℳ \ (ℰ ∪ ℳ') denote the components i for which the lower bounds (but not the
upper bounds) hold with equality and for which \(p_i > 0 \), that is, for which \(\bar{p}_i > p_i > 0 \). We first show that any basis to (6) satisfies \(|\mathcal{U}'| + |\mathcal{L}'| \leq 2 \).

Lemma 1. Assume a basis (possibly infeasible) to (6) is defined by \(\mathcal{U}, \mathcal{L} \) and \(\mathcal{Z} \). We then have \(|\mathcal{U}'| + |\mathcal{L}'| \leq 2 \).

The lemma follows from algebraic manipulation and the fact that \(\mathcal{O} \cap \mathcal{Z} = \emptyset \), which in turn follows from the linear independence of the constraints defining a basis. The full proof is technical and is deferred to Appendix A.1.

We now show that \(\mathcal{U}' \cup \mathcal{L}' \) precisely contains the donors and receivers. From Lemma 1 we can then conclude that in any basis, there is at most one donor-receiver pair.

Lemma 2. Assume a basis to (6) is defined by \(\mathcal{U}, \mathcal{L} \) and \(\mathcal{Z} \), and let \(\bar{p} \) and \(\bar{q} \) be the derivatives of \(p \) and \(q \) with respect to \(\xi \) for this basis. We then have:

(C1) If \(\mathcal{L}' = \{ i \} \) and \(\mathcal{U}' = \{ j \} \), then
\[
\dot{q}_j = \frac{z_j - z_i}{w_i + w_j}, \quad \dot{p}_i = \frac{-1}{w_i + w_j}, \quad \dot{p}_j = \frac{1}{w_i + w_j}.
\]

(C2) If \(\mathcal{L}' = \emptyset \) and \(\mathcal{U}' = \{ i, j \} \), then
\[
\dot{q}_j = \frac{z_j - z_i}{-w_i + w_j}, \quad \dot{p}_i = \frac{-1}{w_i - w_j}, \quad \dot{p}_j = \frac{1}{w_i - w_j}.
\]

The lemma follows from algebraic manipulation of the constraints that define a particular basis. We defer the proof to Appendix A.2. We note that there are potential bases to (6) with \(\mathcal{U}' = \emptyset, \mathcal{L}' = \{ i, j \} \) (Case C3), and \(|\mathcal{L}'| + |\mathcal{U}'| < 2 \) (Case C4) as well. This is the case when \(\xi = 0 \), when \(\bar{p} \) solves (6) for all \(\xi \in \mathbb{R}_+ \), at breakpoints of the function \(q(\xi) \) or when the optimal solution \(\bar{p} \) satisfies \(\|\bar{p} - \bar{p}\|_{1,w} < \xi \). Since none of these cases is relevant for our homotopy method, we do not further elaborate on them.

Algorithm 1 summarizes the homotopy method. As explained above, it follows each basis as \(\xi \) increases as long as it is feasible. The basis becomes infeasible either because some \(p_i \) or some \(l_i \) is reduced to 0. In that case, the algorithm determines the new optimal basis. Since the function \(q(\xi) \) is convex, it is only necessary to search for bases that have derivatives \(\dot{q} \) no smaller than the previous basis. For ease of exposition, Algorithm 1 assumes that there are no ties between the derivatives. It is straightforward but tedious to generalize the proofs to the presence of ties.

Note that we designed Algorithm 1 to generate the entire solution path of \(q(\xi) \). If the goal is to compute the function \(q \) for a particular value of \(\xi \), this is not necessary. However, the bisection method that we describe in the next section will require the entire path in order to compute solutions to \(s \)-rectangular problems.

The following theorem states the correctness of the proposed homotopy algorithm. It shows that the function \(q \) is a piecewise linear function defined by the output generated by Algorithm 1.

Theorem 1. Let \(X_{1:n} \) and \(Q_{1:n} \) be the output of Algorithm 1. Then, \(q(\xi) \) is a piecewise linear function with breakpoints \(X_l \) that satisfies \(q(X_l) = Q_l, l = 1, \ldots, n \).

A detailed proof of Theorem 1 is deferred to Appendix A.3. Broadly speaking, the theorem can be proved by contradiction. Since each point \(X_l \) in the algorithm corresponds to the value of \(\xi \) for some feasible basis, the output generated by Algorithm 1 provides an upper bound on the function \(q(\xi) \). Assume to the contrary that the output does not coincide point-wise with the function \(q(\xi) \). In that case, there must be a basis that is not considered by the homotopy method and that has a strictly smaller derivative than all other feasible bases for some value of \(\xi \). This, however, contradicts the way in which bases are chosen by the algorithm.

3.1. Complexity

A naive implementation of Algorithm 1 has a computational complexity of \(S^3 \) because it enumerates all pairs of indexes. Although this would be an improvement over the typical \(O(S^3) \) time complexity of LP algorithms, having a close to linear time algorithm is preferable. In fact, we observed numerically that the naive implementation performs on par with LP solvers and sometimes even slower. In this section, we describe a way to take advantage of a simple structural property to dramatically speed up Algorithm 1.

The homotopy method transfers probability mass along the components with the greatest possible difference in \(z \) value and the smallest cumulative weight. A component \(i \), therefore, cannot be a receiver if there is another component \(j \) with a smaller \(z_j \) and \(w_j \). The component \(i \) is said to be dominated and can be eliminated from the set of receivers as the following lemma states.

Lemma 3. Consider a component \(i \in \mathcal{S} \) such that there is a component \(j \in \mathcal{S} \setminus \{ i \} \) with (1) \(z_j < z_i \), and (2) \(w_j \leq w_i \). Then, Algorithm 1 will never choose to follow a basis such that \(i \in \mathcal{U}' \).

The proof shows that using \(j \) instead of \(i \) as a receiver leads to a steeper decrease in the objective value and does not introduce any infeasibility. The proof is in Appendix A.4.

In case of ties, when multiple components satisfy \(z_i = z_j \) and \(w_i = w_j \), it is sufficient to choose one of them as a possible receiver and eliminate others. The components that are not dominated and can be receivers can easily be identified in \(O(S \log S) \) using Algorithm 3 (in Appendix B.1).

It can be shown for uniform \(w \) that only the smallest component of \(z \) is not dominated and can serve as a receiver. In this case, our homotopy method takes at most \(S \) steps. More generally, if the weights \(w \) come from at most \(C \) distinct
The intuition behind (7) is as follows. In the robust Bellman update (4), the adversarial nature chooses the transition probabilities p_a, $a \in \mathcal{A}$, so as to minimize the value of the Bellman update $\sum a \cdot d_a \cdot (r_a + \gamma p_a^T v)$ while adhering to the ambiguity budget via $\sum a \cdot \xi_a \leq \kappa$ for $\xi_a = \|p_a - \bar{p}_a\|_{1,w_a}$. In problem (8), $q_a^{-1}(u)$ can be interpreted as the minimum ambiguity budget $\|p - \bar{p}_a\|_{1,w_a}$ assigned to action $a \in \mathcal{A}$ that allows nature to ensure that a results in a value-to-go $r_a + \gamma p^T v$ not exceeding u. Any value of u that is feasible in (7) thus implies that within the specified overall ambiguity budget of κ, nature can ensure that every action $a \in \mathcal{A}$ results in a value-to-go not exceeding u. Minimizing u in (7) thus determines the transition probabilities that lead to the lowest value-to-go under any decision rule d_a, which in turn is tantamount to solving the robust Bellman update (4).

Figure 3 shows an example with 3 actions and q_1, q_2, q_3. If nature wants to achieve the value of u depicted in the figure, then the smallest values for ξ_i such that $q(\xi_i) \leq u$, $i = 1, 2, 3$, are indicated with points, and a budget of $\kappa = \xi_1 + \xi_2 + \xi_3$ is required to ensure a value-to-go of at most u.

Algorithm 2: Bisection algorithm to solve (7)

| Input: ϵ: desired precision, u_{min}: maximum known u for which (7) is infeasible, u_{max}: minimum known u for which (7) is feasible |
| // Assumption: $u_{\text{min}} \leq u^* \leq u_{\text{max}}$ |
| while $u_{\text{max}} - u_{\text{min}} > 2 \epsilon$ do |
| Split interval $[u_{\text{min}}, u_{\text{max}}]$ in half: |
| $u \leftarrow (u_{\text{min}} + u_{\text{max}})/2$; |
| Check feasibility of the midpoint u: |
| $s \leftarrow \sum_{a \in \mathcal{A}} q_a^{-1}(u)$; |
| if $s \leq \kappa$ then |
| When u is feasible update the feasible upper bound: $u_{\text{max}} \leftarrow u$; |
| else |
| When u infeasible update the infeasible lower bound: $u_{\text{min}} \leftarrow u$; |
| end |
| end |
| return $(u_{\text{min}} + u_{\text{max}})/2$; |

The reformulation (7) can be solved by a bisection algorithm, as summarized in Algorithm 2. Bisection is a natural approach for the one-dimensional optimization problem in (7). It is efficient because the functions $q^{-1}(u)$ are piecewise linear with a small number of segments when the ambiguity sets are constrained by the L_1 norm. That is, $q(\xi)$ is piecewise linear with breakpoints X_1, \ldots, n and values $Q_i = q(X_i)$ with $n \in \mathcal{O}(|\mathcal{E}||X|)$ (from Corollary 1). The inverse function $q^{-1}(u)$ is also piecewise linear with breakpoints Q_1, \ldots, n and corresponding values of $X_1 = q^{-1}(Q_1)$; care needs to be taken to define $q^{-1}(u) = \infty$ for $u < Q_n$. The following theorem states the correctness of (7).

Theorem 2. The optimal objective values of (4) and (7) coincide.

The proof is deferred to Appendix A.5. It employs strong linear programming duality and algebraic manipulation.

Algorithm 2 only computes the objective value of the robust Bellman update and not the optimal d or p values. These val-
ues are necessary when implementing variations of policy iteration which are vastly more efficient than value iteration (Kaufman & Schaefer, 2013). As we show, the value of \(d \) can be computed from the derivatives of \(q_{a}^{-1}(\xi) \) and the optimal \(u^* \) in linear time. As this procedure is simple but technical, we defer it to Appendix A.6.

4.1. Computational Complexity

The runtime of Algorithm 2 depends on the desired level of precision. It is possible to eliminate this dependence by taking advantage of the piecewise linearity of \(q_{a}^{-1}(\xi) \) and \(q_{a}^{-1}(u) \). Because the extension is simple, but tedious, we defer it to Appendix B.2. The idea is to choose the median breakpoint between \(u_{\text{min}} \) and \(u_{\text{max}} \) instead of the mean value. Bisects then continue until \(q_{a}^{-1} \) are affine on the interval \([u_{\text{min}}, u_{\text{max}}] \) for all \(a \). Then, \(u^* \) can be obtained by solving two equations with two unknowns. Appendix B.2 describes this method in Algorithm 4 and proves the following complexity statement.

Theorem 3. Assuming that all \(q_{a}^{-1} \) are piecewise linear with at most \(|\mathcal{E}| \cdot |S| \) segments, then the worst-case time complexity of Algorithm 4 is \(O(|\mathcal{E}| S \log(|\mathcal{E}| S A)) \).

5. Numerical Results

In this section, we evaluate the numerical performance of the proposed algorithms by measuring their times to compute a single Bellman update. Note that since the methods are exact, they have no effect on the number of iterations taken by the (approximate) policy or value iteration method.

We focus on three sets of domains with very disparate characteristics. The first set of problems are generated randomly. The transition probabilities are sampled from a uniform distribution supported on \([0, 1]\) and are subsequently normalized. The rewards are zero, and the value functions are sampled i.i.d. from the uniform distribution on \([0, 1]\). The weights \(w_i \) of the \(L_1 \) norm are sampled i.i.d. from the uniform distribution on \([0.5, 2]\) (very large/small weights are omitted since they simplify the optimization). These random problems have dense transition probabilities, and many actions have similar Q-values, which makes them particularly challenging.

We use the classic inventory management problem (Zipkin, 2000) to generate the second set of instances. The holding cost, purchase cost, and sale price are 0.1, 1.0, and 1.6, respectively. There are no backlogs, and the inventory is limited by the number of states \(S \). The demand is sampled from a normal distribution with mean \(S/2 \) and standard deviation \(S/5 \). The weights for the \(L_1 \) norm are set to \(w_i = 10/\bar{p}_i \) (as suggested for the \(L_2 \) norm in Iyengar (2005)) and clamped to the interval \([0.3, 3.0]\). The initial state is 0 (no inventory), and the value function is linear with slope

1. Inventory problems are more structured and sparse, and their Q-values are more diverse.

The third set of instances involves simple reinforcement learning benchmark problems. These numerical results are reported in Appendix D.

We compare the proposed methods with Gurobi 7.5, a state-of-the-art commercial LP solver. A comparison with related algorithms, such as those in Petrik & Subramanian (2014) and Iyengar (2005), is omitted because they are special cases of the homotopy method for the plain \(L_1 \) norm and do not generalize. We are unaware of any prior fast method for computing \(s \)-rectangular Bellman updates.

A number of methods have been proposed for choosing appropriate values of \(\kappa \) in RMDPs and reinforcement learning (Weissman et al., 2003; Wiesemann et al., 2013; Taleghan et al., 2015; Petrik et al., 2016). Instead of using a specific value of \(\kappa \), we examine the runtime of all methods on a range of possible \(\kappa \) values.

The remainder of the section presents timing results first for the \(s, a \)-rectangular homotopy method and then for the \(s \)-rectangular bisection method. The homotopy method uses Algorithm 3 to eliminate dominated donor-receiver pairs. The bisection method is implemented as in Algorithm 2, except that it stops if all \(q_{a}^{-1} \) are affine and computes \(u^* \) as in Algorithm 4. All results were generated on a PC with i7-6700 3.4 GHz CPU with 32 GB RAM. All algorithms were implemented in C++ and the code is available from the publications section of http://cs.unh.edu/~mpetrik.

5.1. \(s, a \)-rectangular Ambiguity

In our first benchmarks, we compute \(q_{s,a}^{-1}(\xi) \) for a single state \(s \) and action \(a \). We vary the number of states from 50 to 400 in increments of 50. Since the \(L_1 \) norm distance between two distributions is always between 0 and 2, we consider \(\kappa \in \{0.0, 0.25, 0.5, 0.75, \ldots, 1.75, 2.0\} \) and report average performances over those sizes. The same \(\kappa \) values are used for the weighted \(L_1 \) norm although they may be greater than 2. The results are averaged over 5 runs.

Figure 4 shows the timing results for the two domains. To enhance clarity, we omit confidence intervals which are very small. The figure compares the times needed to solve the robust Bellman update for both the weighted and the plain \(L_1 \) norms in the same plot.

Several important conclusions can be drawn from Figure 4. First, the homotopy method for the plain \(L_1 \) norm is about 1,000 times faster than Gurobi, and the generic homotopy method for weighted \(L_1 \) norms is about 100 times faster. Second, there is virtually no difference between Gurobi’s runtimes for the weighted and unweighted problems. Weights slow down the homotopy method signifi-
cantly in random problems but much less so in the inventory problem. This is caused by the uniformly distributed weights w in random problems, which imply that fewer components can be eliminated using Lemma 3. Finally, while the speedup over Gurobi is considerable, it does not increase significantly as the number of states S increases.

5.2. s-rectangular Ambiguity

In the s-rectangular case, the bisection method is used to compute (4) for a single state s. We consider problems with $S = 25, \ldots, 200$ states in increments of 25 and let $A = S$. We let the size of the ambiguity sets vary with the number of actions: $\kappa \in \{0.0, 0.25 \cdot A, 0.5 \cdot A, 0.75 \cdot A, \ldots, 1.75 \cdot A, 2.0 \cdot A\}$ for both the weighted and the unweighted L_1 norm. All algorithms are affected minimally by the choice of κ. The results are averaged over 5 runs.

Figure 5 shows the timing results for the two problem domains. We can make several observations. First, the bisection method is 1,000 to 10,000 times faster than Gurobi. Second, the speedup increases with S. With 200 states and actions, the bisection method is up to 1,500 times faster than Gurobi in the inventory domain and up to 49,000 times faster in the random domain and an intermediate choice of κ.

Additional experimental results, which we omit here, show that the runtimes of all methods are quite insensitive to κ and the state-to-action ratio. Finally, the bisection method is about 10 times slower than the nominal solution.

6. Conclusion

We proposed two new methods for computing robust Bellman updates. Our new algorithms have a computational complexity of $O(SA \log(SA))$ for plain and certain weighted L_1 norms, which is almost as efficient as the $O(SA)$ complexity of Bellman updates in nominal, non-robust MDPs. While the worst-case complexity for weighted L_1 norms is quadratic, we proposed an elimination procedure to reduce the complexity in typical instances.

Our empirical results show significant speedups over a leading LP solver. We achieve meaningful speedups of 100-1,000 times for s, α-rectangular ambiguity sets, but they do not increase with problem size. For s-rectangular ambiguity sets, on the other hand, we achieve speedups of 1,000-10,000 times and they increase with problem size.

Future work should address extensions of the methods to generic L_p norms, Wasserstein balls, as well as their use in practical problems.
Acknowledgments

We thank the anonymous reviewers for comments that helped to improve this paper. This work was supported, in part, by the National Science Foundation under Grant No. IIS-1717368, by the Engineering and Physical Sciences Research Council under the Grants EP/M028240/1 and EP/M027856/1, and by the Imperial College Junior Research Fellowship. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation and the Engineering and Physical Sciences Research Council.

References

Duchi, John, Shalev-Shwartz, Shai, Singer, Yoram, and Chandra, Tushar. Efficient projections onto the ℓ_1-ball for learning in high dimensions. In International Conference of Machine Learning (ICML), 2008.

